
Problem Set 4

EC 303: Empirical Economic Analysis

Due November 8, 2019 at 3:30pm.

1 Theoretical Problems

Problem 1.1: An Estimator of Variance. Typically, when estimating variance, we use an estimator of
the form σ̂2 = c

∑n
i=1(Xi −X)2, where c ∈ R is a constant that may depend on the sample size n.

a. Show that the expected value of σ̂ is equivalent to c · g(n) · σ2, where g(n) is a linear function of the
sample size n.

– Hint: Use the fact that
∑

(Xi −X)2 =
∑
X2
i −

(
∑
Xi)

2

n , and that E[Y 2] = V (Y ) + E[Y ]2.

b.** What does the value of c need to be for this estimator to be unbiased?

c.** If instead we use c′ = 1
n , what would the bias of the estimator be? Does this biased estimator tend to

over- or under-estimate the true value σ2? How does the bias change as n increases?

d.** Taking as given that V[σ̂2] = c2σ4[2(n− 1)], what value of c minimizes the MSE? What does this tell
you about your estimator?

e. If S2 is an unbiased estimator for σ2, is S an unbiased estimator for σ? Why or why not?

Problem 1.2: Standard Errors. Complete Exercise 7.11 from the textbook.

Problem 1.3: Method of Moments **. a. Recall that a Poisson distribution depends on a single
parameter λ, which is both its mean and variance (E(X) = V(X) = λ). Use the method of moments

to derive two estimates, λ̂1 and λ̂2, from a simple random sample {x1, x2, ..., xn} that has mean 153
and standard deviation 14. Comment on their difference—do you think it is sizeable?

b. Let {Y1, Y2, ..., Yn} denote an i.i.d. sample from a population with a F (ν1, ν2) distribution where ν1
and ν2 are the numerator and denominator degrees of freedom, respectively. It can be shown that the
mean only depends on the denominator degrees of freedom:

E(Yi) = ν2/(ν2 − 2).

Use this fact to derive an estimator of ν2 using the method of moments.

Problem 1.4: Maximum Likelihood Estimation **. Remember to maximize the log of the likelihood
function in your estimations!

a. Suppose that {X1, X2, ..., Xn} is an i.i.d. random sample, where Xi has a Bernoulli distribution, with
parameter p. Find a maximum likelihood estimator pMLE.

b. Suppose that {X1, X2, ..., Xn} is an i.i.d. random sample, where Xi follows a normal distribution, with
mean zero and unknown standard deviation σ. Find the maximum likelihood estimator σ̂MLE. How
does this compare to the typical estimator?

Problem 1.5: More Estimation. Complete Exercises 7.23 and 7.30 from the textbook.
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Problem 1.6: A More Flexible Confidence Interval. Complete this textbook exercise (8.8): let α1, α2 ∈
(0, 1) with α = α1 + α2. Then

P

(
−zα1

<
X − µ
σ/
√
n
< zα2

)
= 1− α

a. Use this equation to derive a more general version of the confidence interval for µ (the special case
that we’re used to dealing with is Equation 8.5 in the textbook).

b. Let α = 0.05 (what kind of confidence interval does this mean we’re constructing?), and let α1 = α/4
and α2 = 3α/4. Will the resulting interval be narrower or wider than the original interval?

Problem 1.7: Constructing Confidence Intervals **. These problems give you practice constructing
various confidence intervals.

a. Complete Exercise 8.5 parts (a)–(c) from the textbook.

b. Complete Exercise 8.26 from the textbook.

Problem 1.8: Familiarizing Ourselves with New Distributions. Complete Exercises 8.30 and 8.44
from the textbook. These are quick exercises to get you comfortable with the t and χ2 distributions.

Problem 1.9: An Application. Finally, complete Exercises 8.34 and 8.46 from the textbook, to put it
all together.

2 Stata Exercises

Problem 2.1: Bootstrapping Standard Errors. This problem will walk you through a bootstrap method
to obtain an estimator and standard errors for a difference in means and percentiles.

For this exercise, use the discrim data set from the bcuse package. This data contains information on
fast food prices and neighborhood characteristics. We are interested in testing the claim that those in high-
minority neighborhoods (in this case proxied by the fraction of blacks in a neighborhood) are subject to
higher prices due to discrimination.

a. Make a scatter plot of the psoda and prpblck variables, adding a linear trend over top. What do you
see? Interpret the linear trend, and argue whether you think the result looks reasonable given the
scatter plot.

b. Create a binary indicator for if a neighborhood has 20% or higher black population. Calculate the
mean and median soda price in each type of neighborhood (high minority and not). Compare and
interpret the differences across neighborhoods, as well as the difference between mean and median.

c. Now bootstrap the difference in means across both neighborhood types. That is, in each replication,
your bootstrapped value should be: mean(psoda|prpblck≥ 0.2)−mean(psoda|prpblck< 0.2). What is
the bootstrapped mean difference in prices (and its standard error)? Interpret this result.

– Use 500 replications, and don’t forget to set the seed to 1223334444.

d. Now repeat the exercise for the difference in the 10th percentile of prices. For this one, use 1000
replications (as there are generally fewer possible outcomes). Interpret this result as before. Why
might we be interested in this percentile rather than the mean?

e. We often say that a difference is “significantly” different from 0 if its confidence interval does not
include 0. Construct a 95% confidence interval around both of your estimated differences (using the
bootstrapped standard error). Are these significant? Do the differences seem economically meaningful
to you? What would you conclude about discrimination in fast food prices?
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Problem 2.2: Maximum Likelihood Estimation & Confidence Intervals. This problem walks through
using MLE and constructing CIs in Stata. First, we will perform maximum likelihood estimation. This can
save the rather tedious calculation of derivatives. For example, consider the Poisson distribution:

f(y;µ) =
µye−µ

y!

Calculating these derivatives would be little fun as factorials become unwieldy quickly.

a. Simulate a data set of 5000 observations from a Poisson distribution with a true parameter µ = 5. Call
this variable myvar (for ease of following the instructions later on).

b. For an i.i.d. sample of n observations, write and simplify the log-likelihood function for this distribution
(no Stata necessary)

c. Now we will walk through how to estimate this using Stata’s MLE program:

– We will specify a program that calculates the log-likelihood function for any given observation.
The function we will use is

`(µ|yi) = yi ln(µ)− µ− ln(yi!).

How does this compare to your answer to (b)?

– First, define a program that calculates the log-likelihood function for any observation. This
program has the following syntax:

program d e f i n e po i s son
ve r s i on 1 .0
args l n f mu
q u i e t l y r e p l a c e ‘ l n f ’ = $ML y1∗ ln ( ‘mu’)− ‘mu’ − l n f a c t ($ML y1)

end

The program starts by us assigning a name (poisson) and a version (1.0). We then give it a list
of arguments that we care about—the first (lnf) is the log-likelihood that we wish to calculate,
and the second (µ) is the parameter to estimate. The last line of the program uses µ and any
observation ($ML y1) to calculate the log-likelihood for that particular observation. Stata will
automatically do the summation at the end of the procedure.

– Once the program has been defined, we call it into action with the command ml model lf poisson
(myvar=). This command calls a maximum likelihood model (ml model) that performs a linear
fit (lf) using our program and dependent variable myvar.

– Finally, the estimation is performed with the command ml maximize

– What is the estimated parameter µ? What is its 95% confidence interval, and does that interval
contain the true µ?

d. Would the MLE estimation perform this nicely if the data were a little noisier? To each observation, add
a shock ε ∼ N (0, 1). Since we are working with a discrete log-likelihood function (we have factorials),
you will need to round each observation of the new variable to the closest integer, and make sure that
any negative integers are changed to 0 (so that we can take logarithms1). Now repeat the estimation in
part (b) and report your new estimated µ̂ and its 95% confidence interval. Did the estimation perform
worse? Why do you think that is?

e. While Stata gives you the 95% confidence interval easily, it can also quickly calculate any interval
you’d like to know. Use the invnorm() function to construct a 92%, 97%, and 99.6% confidence interval
for your answer to (b) and (c). Remember that the area to the left of a confidence interval should be
α/2, not just α. Present your results in a well-organized table (you don’t need to make this table in
Stata unless you really want to). How do the confidence intervals compare across the two estimation
techniques?

1Note that Stata can handle ln(0) by using a very large negative number.
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Problem 2.3: Bootstrapping Confidence Intervals. In some cases, we may care about finding a confi-
dence interval for a parameter even when n is not large and the underlying distribution is non-normal. Once
again, bootstrapping can help us! For this problem, use the prminwge data, which contains a small number
of observations on Puerto Rico’s minimum and average wages.

a. Report a normality plot of the avgwage variable. Does it appear to come from a normal distribution?

b. Now bootstrap the sample and store the average wage each time. Report a histogram of these average
wages. Use 999 replications (you’ll see why in a second). Does this appear normal?

– Don’t forget to set your seed.

c. Now we can form a confidence interval using the sample standard deviation of the bootstrap means,
sboot:

(X − zα/2 · sboot, X + zα/2 · sboot)

What is the 95% confidence interval for the average wage using your bootstrapped estimates?

d. If the bootstrapped distribution is not perfectly normal, we can use a percentile interval instead.
This uses the α/2 and (1 − α)/2 percentiles of the bootstrapped definition to construct an interval.
That is, if we sort the bootstrapped means from smallest to largest, we would choose the k-th smallest
and k-th largest estimates, where k = α(B + 1)/2.

– This is why we used B = 1000. In this case, what is k for a 95% percentile interval?

– What is the 95% percentile interval given our bootstrapped data? How similar/different is it to
the 95% confidence interval? Why do you think that is?

e. Under some circumstances, the actual confidence level may differ substantially from the nominal level
(the level you think you are getting); that is, we may not be actually obtaining a 95% confidence
interval using the percentile interval approach. To correct for this, Stata can construct a bias corrected
and accelerated (BCa) interval. To implement this, re-load the prminwge data set and use the following
two lines:

– bootstrap, reps(999) bca: mean avgwage (performs the actual bootstrapping)

– estat bootstrap (gives you the corrected confidence interval)

What is the resulting interval? In what direction did the interval move? What does this imply about
the bias of the estimator in this context (e.g., in the context of the average wage of PR)?
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