
Problem Set 5 Solutions

EC 303: Empirical Economic Analysis

Due December 2, 2019 at 3:30pm.

1 Theoretical Problems

Problem 1.1: Performing hypothesis tests. This problem asks you to perform simple hypothesis tests
for sample means and populations. For each test, make sure to (i) state the null and alternative hypotheses
and the chosen level of significance, (ii) define the test statistic, (iii) calculate the value of the realized
statistic with its corresponding p-value, and (iv) decide whether or not to reject the null hypothesis, with a
sentence explaining what that decision means in the context of the problem.

a. Complete Exercise 9.25 from the textbook. (Note: For each of these problems, you may do a one- or
two-sided test, but think about what would be the best in each context.)

b. Complete Exercise 9.40 from the textbook.

Problem 1.2: Getting comfortable with p-values. This problem is adapted from problem 9.47 in the
textbook. For a fixed hypothesis test of H0 : µ = 5 against H1 : µ > 5, five test statistics T are listed below.
For each, state the corresponding sampling distribution and compute the associated p-value.

a. T = 1.42, σ is known, n = 100

b. T = 0.9, σ is known, n = 1, 000, 000

c. T = −1.96, σ is unknown, n = 26

d. T = 2.48, σ is unknown, n = 3

e. T = −0.11, σ is unknown, n = 800

f. For which of these tests would we reject the null hypothesis when α = 0.05? Does this always correspond
to a large T? Why or why not?

Problem 1.3: Testing variance. This problem introduces you to testing variances, rather than sample
means/populations. It is adapted from problems 9.88 and 9.89 in the textbook.

a. In Chapter 8, we formed the confidence interval for the variance σ2 of a population. We relied on the
fact that this statistic has a χ2 distribution:

(n− 1)
S2

σ2
∼ χ2(n− 1). (1)

Use this fact to write a test statistic for the test:

H0 = σ2 = σ2
0

H1 = σ2 > σ2
0

α = α.

That is, how would you convert Equation (1) into a test statistic?
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b. What would change about this statistic if we want to perform a test on σ instead of σ2?

c. The distribution of this test statistic is χ2(n−1) and the associated critical value is χ2
α,n−1 (recall that

this means the value of the distribution with area α to its right (see p. 409 if this is rusty).

A monopsonistic labor market is one where firms have wage-setting power, due to reduced competition
for workers. One potential flag for monopsonies is a high degree of variation in wages within a market
(see Webber, 2015). Suppose that a labor market is considered monopsonistic if the standard deviation
of wages in that market is larger than $10 an hour. If you interview 10 firms in an industry (e.g., the
retail sector) and find that their wages have a standard deviation of 12, can you conclude that there
is a significant degree of monopsony power in that market? Test the appropriate hypotheses using
α = 0.05.

d. Now suppose you interview n = 21 regional clinics that hire nurses in an area. For this data, and find
a test statistic of 31.58.Use a computer to calculate the p-value for the same test in part (c). What
does this tell you about monopsony power in the market for nurses? Does your test give you a sense
of how “strongly” monopsonistic this area is?

Problem 1.4: Testing a difference in means. Frequently, we care about whether or not two groups
have the same mean in a given outcome (this is the entire basis of estimating the effect of a treatment on a
group relative to a control!). This problem will help extend the testing framework to that problem.

a. Consider two groups {X1, ..., Xm} and {Y1, ..., Yn}. We suppose that Xi ∼i.i.d. f(µ1, σ1) and Yi ∼i.i.d.

f(µ2, σ2). Additionally, we suppose that X and Y are independent samples.

We are trying to estimate the difference in means, µ1 − µ2. What sample estimator should we use?
(You can use the method of moments in a pinch, but trust your gut.)

b. Prove that your estimator is unbiased, and that it has a standard deviation of

σT =

√
σ2
1

m
+
σ2
2

n

c. Now use your estimator to write a test statistic for the following test:

H0 : µ1 − µ2 = ∆0

H1 : µ1 − µ2 > ∆0

α = α0.

Recall that the general version of a test statistic is

T =
estimator− assumed value in H0

s.d. of your estimator

d. This test statistic follows the same rules as other statistics—if we know σ2 or have a large enough
sample, T ∼ N (0, 1). If instead, we use our estimate s2, the test statistic uses a t distribution (whose
degrees of freedom is a function of n and m).

Suppose that we are trying to evaluate the effect of political information on voter’s preferences. Specif-
ically, we take 1,000 college students and divide them into a treated group of n = 400 students and
a control group of m = 600. To the treated group, we show a series of economic articles discussing
the Fundamental Welfare Theorems in economics, and then ask them what they think is the optimal
wealth tax in the United States. We ask the control group the same question, but without giving them
information on economic theory. We estimate that X = 6% for the treated group, and Y = 4.5% for
the control group. The control group has a standard deviation of responses of 5%, but the treated
group only has a standard deviation of 4% (these large standard deviations occur because of political
leanings, which cause a large spread in answers).

Do we have enough information to discern that the treatment had an effect (so that ∆ > 0?) Test this
at the α = 0.05 level.
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– Note: Keep the reported averages in whole numbers (e.g., 6 and 3), not percentages (so don’t
write 0.06 and 0.03).

e. Are the results surprising to you? Would you argue that they are economically meaningful? Defend
your answers.

Problem 1.5: Paired Data. A closely related problem to the issue raised in 1.4 is that of paired data,
in which we have only one set of individuals that we treat over time. That is, instead of comparing two
different groups where only one received treatment, we follow a group from a baseline outcome (before they
are treated) to a post-treatment outcome.

a. In this setup, what is the relationship between n and m (if we observe every individual twice)? How
does this simplify your test statistic?

b. We will simplify this even further by assuming that we have data {d1, ..., dn} for our n individuals,
where d is the difference in their treatment period and their baseline. From these data, we can directly
calculate d and sd(d). Adapt the test procedure for problem 1.4c to depend only on these two pieces
of information (that is, write out the hypotheses and the test statistic).

c. Suppose that we perform an intervention in which college undergrads offer tutoring in statistics to
disadvantaged high school students. We measure these students’ performances before and after the
tutoring as their scores on the midterm and the final exam:

Student Midterm score Final score Difference
1 80 82 2
2 99 99 0
3 60 50 -10
4 70 72 2
5 88 80 -8
6 20 24 4
7 95 92 -3
8 100 94 -6
9 75 80 5
10 64 60 -4

Use your answers above to perform a two-sided test of the hypothesis that the tutoring had no effect
on these students at the α = 0.05 level (hint: note the small sample size). What do you conclude?
Can you think of anything that might be confounding this experiment, or does it seem likely that your
test results are correct?

Problem 1.6: Simple Bayesian Updating. We are interested in the fraction of low-income housing res-
idents who would accept a government-sponsored voucher to move to a wealthier neighborhood. Within a
given neighborhood, we suppose that the fraction m of movers comes from a uniform distribution [0, θ], but
we don’t know the end point of the interval. We will estimate this by Bayesian analysis.

a. What is a good upper bound to start with for θ? (That is, our prior should be defined for what values
of θ?) What is θ telling us in this context (and why would we care about it)?

b. Suppose that we start with a sample of 5 neighborhoods, and observe {mi} = {0.05, 0.1, 0.15, 0.2, 0.22}.
Given this information, what values of θ can we rule out? Should our starting value of θ go up or
down?

c. What is the general likelihood function for a data set of n neighborhoods, each drawn uniformly from
[0, θ]? What is the specific likelihood function for the 5 neighborhoods you’ve measured?
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d. Now, let’s define a suitable prior for this problem. If the likelihood function is uniform on [0, θ], a
conjugate prior comes from the Pareto distribution with hyper-parameters xmin and k. Recall that the
Pareto distribution is characterized by

f(θ;xmin, k) =

{
kxk

min

θk+1 θ ≥ xmin

0 otherwise.

whenever x > xmin.

Show that this prior is a conjugate prior by proving that the product of the likelihood function and
the prior distribution is proportional to another Pareto distribution. This is most easily shown by
ignoring the constant kxkmin, since we’re showing proportionality instead of equality ; hence, show that
the product of your likelihood function and 1

θk
follows the Pareto pattern 1

θk′ .

– Use the general likelihood function from part (c), not the one specific to your 5 data points.

e. What should the posterior distribution of θ look like, based on your answer to (d)? That is, what are
the two new hyper-parameters of the posterior distribution?

– To get the change in xmin, consider your answer to (b)—for what values of θ will the prior and
the likelihood both be non-zero (as these are the values for which the posterior will be non-zero).

f. The second parameter of the Pareto distribution defines the lower bound for the interval over which θ
is likely to occur, and the first parameter of the Pareto controls how concentrated probability is around
the lower bound (higher k = higher likelihood of smaller θ). Based on this, and your answer to (e), how
does data affect the posterior distribution of θ? Overall, what does this tell us about how collecting
data among various neighborhoods will lead to an accurate estimate of θ?

Problem 1.7: Connecting HDIs to the Real World. Suppose an election is approaching, and you are
interested in knowing whether the general population prefers candidate A or candidate B. There is a just
published poll in the newspaper, which states that of 100 randomly sampled people, 58 preferred candidate
A and the remainder preferred candidate B.

a. Suppose that before the newspaper poll, your prior belief on the fraction of candidates preferring A
was a uniform distribution. What is the 95% HDI on your beliefs after learning of the newspaper poll
results? Who do you think will win? Can you say this will with 95% confidence?

– Hint: Once you have specified the posterior, use this website to calculate the critical values.

b. You want to conduct a follow-up poll to narrow down your estimate of the population’s preference. In
your follow-up poll, you randomly sample 100 other people and find that 57 prefer candidate A and the
remainder prefer candidate B. Assuming that peoples’ opinions have not changed between polls, what
is the 95% HDI on the posterior? Now what is your conclusion about the election—can you declare
victory for one candidate (with 95% confidence)?

2 Stata Exercises

Problem 2.1: Hypothesis Testing in Stata. This problem introduces you to hypothesis testing in Stata.
For this problem, use the jtrain2 data set (Note: Don’t use the jtrain data set here.).

a. This data contains information on workers, some of whom attended a job training program. The
variables of interest are train, which tells us if the person received training, and re78, which tells us
their real monthly earnings in 1978 (measured in 1000’s of dollars). First, perform a simple test using
the ttest command that the mean real wage in 1978 was equal to $5,000. What do you conclude? Use
α = 0.05.

b. Repeat this test separately for the groups that got the job training, and those that didn’t. Use α = 0.05.
What do you conclude?
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c. Construct 95% confidence intervals for re78 for both groups (trained and untrained). How do these
confidence intervals relate to your answers in (b)? What information do they add?

d. One way to visualize hypothesis testing is to visualize confidence intervals. Use the procedure outlined
below to collapse your data into different groups of individuals who received job training. Make 95%
confidence intervals for re78 for each of the groups, and plot them all on a graph. Include a dashed
line at $5,000 so we can easily see which confidence intervals contain the null hypothesis value. Which
groups can we say have wages different from $5, 000?

– Don’t forget to drop those without the job training

– Make one variable that has 3 levels for the 3 buckets of age: < 30, 30–39, and 40+. Make another
that has 3 levels of education: less than high school, HS diploma, and some/all college (remember
that a HS degree is 12 years of education).

– Use the command local group black hispanic age grp ed grp to define a grouping mechanism

– Use the collapse command to get means and standard errors for each group. I suggest typing
collapse (mean) y = re78 (semean) se y = re78, by(group), but there are multiple ways to do this

– Drop all groups without standard errors (they have small sample sizes). You should be left with
13 groups.

– For graphing, check out the rcap command—it will help the CI’s look nice in your twoway plot.

Problem 2.2: Hypothesis Testing and Simulation. This problem exposes you to the competing no-
tions of Type I and II errors in hypothesis testing, as well as the concept of a test’s power. For this problem,
you will simulate your own data and treatment effect.

a. Think of a context where you would like to perform a hypothesis test. This could be related to
any of the examples that we have discussed in class, but should reflect something that you might be
interested in researching one day. State your problem’s context, and the null/alternative hypotheses
you are seeking to test. Use α = 0.05.

b. Simulate data according to this context. Bake a true rejection of H0 into your simulation—that is, if
my null hypothesis is that µ = 0, I may want to draw my data from a normal distribution with a true
mean of µ = 2 instead.

– Use a sample size of 10,000 observations.

– You may assume your data are normally distributed with a variance of σ2 = 4, no matter your
true context (although other simulations are encouraged, if you like).

– Make the treatment effect about 10% higher than your null hypothesis value µ0.

c. What is the p-value associated with a simple test of your hypothesis using the full data set? What
would you conclude from the full data?

d. Now simulate 1,000 different tests. For each test, take a sample (with replacement; use the bsample
command) of 100 observations from your population, and perform the t-test on that subset. For each
test, record the p-value. Once you have finished, make a histogram of your p-values. What fraction of
the time do you reject the null hypothesis? How often do you fail to reject the null hypothesis even
though you should? What type of error is this?

e. Now suppose that your null hypothesis is true for your context. Re-simulate data from a distribution
with mean µ0 and repeat the procedure in (d). Re-report the histogram. What fraction of the time do
you falsely reject the null hypothesis (and how does this compare to your set level of α)? What kind
of error is this? What would the consequences of this error be in your context?

f. The power of the test is the probability of correctly rejecting the null hypothesis, and is written as
1 − β. In the setting above, what was the power of the test? What do you think happens to a test’s
power as the difference between Ha and H0 decreases? What does this mean in your context?
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Problem 2.3: Bayesian Analysis and MCMC Methods. This problem reviews the Bayesian analysis
code we’ve discussed in class.

One conjugate pair that we can use easily in Stata (but less easily in computation) is the normal-normal
pair. Suppose that we are environmental economists attempting to estimate the true impact of a new farming
technique on emissions reductions. We know that the technology causes a shock to emissions that follows
a normal distribution N (µ, 10), so that the variance of this technology is known1. Based on lab results, we
have a prior belief that µ itself is normally distributed with mean ν = −8 and τ = 5. All units here are
percentage points of carbon emissions.

a. The first farm to implement the technology in our new country experiences a 10 percentage point
decline in their carbon emissions. Graph the prior and the posterior distributions given this data. How
does this observation change our beliefs about µ?

– To obtain the posterior distribution, use the fact that if the original hyper-parameters of the prior
are (ν, τ2), the hyper-parameters of the posterior will be(

σ2ν + τ2nx

nτ2 + σ2
,

σ2τ2

nτ2 + σ2

)
b. Repeat this exercise for a fluke farm, that somehow experienced a 10 percentage point increase in their

emissions after using the technology. How does the fluke affect the posterior?

– Don’t use the -10 from part (a) in your calculation of the posterior.

c. We deliver this technology to 20 farms sequentially, and observe the following reductions in each of
their emissions (in order):

X = { − 10,−8,−5,−3, 3,−4,−3,−2,−2, 0

− 1,−1, 1,−2, 0, 2, 2, 3, 5, 6}

Suppose that we receive government funding to implement this technology only as long as our posterior
distribution has a mean at or below 2 percentage points (a sizeable enough reduction to justify the
cost of the technology). At what point in this chain of data would our funding have been cut?

– Notice that you only need the posterior mean after each iteration, not the full distribution. This
should simplify things.

d. Do the data look to be independent? If we suppose that there is a month or more between each
observation, can you think of something that might be happening to our data that caused us to lose
funding?

e. The research team decides that measuring each individual farm’s reduction in percentage points doesn’t
make sense given the wide variation in farm output. Instead, they recode the data as 1 if emissions are
reduced, and 0 otherwise. Use the MCMC algorithm discussed in class (for this Binomial data) and a
flat prior to estimate the posterior distribution of θ. How do we interpret θ? Should we continue to
push the technology based on a flat prior if we want θ ≥ 0.5? How about with the prior distribution
Beta(0.1 ∗ 20, 0.9 ∗ 20) (where we’re less sure there’s an effect)?

– Be sure to check the diagnostics to make sure your algorithm converged well.

3 References

• Webber, Douglas A., 2015. Firm market power and the earnings distribution. Labor Economics.

1This may not be a completely unreasonable assumption if, for example, we are adapting a technology for use in one
developing country that has already been used more widely in other areas of the globe, and we hence have prior information
on its variation.
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