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10. Dummy variables

y = β0 + xβ + γ1{something happens}+ u

• γ measures the effect of a binary event
• Can be many binary events, as long as:
• Dummy variable trap: always need an omitted group, or else you have

a problem of perfect multicolinearity
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2. Adding variables to a model

Suppose that we are considering adding one more variable to a linear
model—when will the MSE decrease?

1 Compare MSEr with MSEur :

SSRur

n− k − 2
= MSEur ,

SSRr

n− k − 1
= MSEr

2 Hence, the MSE decreases iff

MSEur ≤ MSEr ⇔ (n− k − 2 + 1)MSEur ≤ (n− k − 1)MSEr

⇔ MSEur ≤ (n− k − 1)MSEur − (n− k − 2)MSEr

⇔ 1 ≤ F

3 Since we are testing inclusion of one new variable, F = t2; hence, MSE
goes down if t2 ≥ 1, or if |t | ≥ 1

EC 508: Final Review Alex Hoagland (BU) 4



Other important things

• Be able to calculate how OLS estimates change when you scale data
(Section 6.1)

• Know how to find optimal points for models with quadratic terms (p.194
in text)

• Understand how to interpret interaction effects (p.198)

• Understand difference between R2 and R
2

(p.202)
• Understand interpretation of linear probability models (Section 7.5)
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Chapter 8: Heteroskedasticity
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1. Heteroskedasticity

V[u|x ] 6= σ2

Consequences:
• β̂ are still unbiased and consistent

• R
2

is unchanged
• Variances V[β̂] are now biased→ inference breaks down
• OLS is no longer BLUE
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1a. Robust standard errors

Under heteroskedasticity, V[ui |xi ] = σ2
i

Recall that we can write the regression estimator as

β̂ = β +

∑
i(xi − x)2ui

SST2
x

⇒ V[β̂] =

∑
i(xi − x)2ûi

SST2
x

This transformation of the residuals = robust standard errors
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3. Breusch-Pagan test

We want to test the null hypothesis of homoskedasticity: H0 : V[u|x ] = σ2

We can rewrite this hypothesis as:

H0 : V[u|x ] = σ2 ⇔ E[u2|x ] = 0

⇔ E[u2|x1, x2, ...] = 0

⇔ u2 = δ0 + δ1x1 + δ2x2 + ...+ δkxk + ε

⇔ H′0 : δ1 = ... = δk = 0. (*)

When performed as an LM test (not an F-test), this is the Breusch-Pagan test

Test statistic: LM = nR2
∗ ∼ χ2

k
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4. White test

Gauss-Markov still holds as long as Corr(u2, xi) = Corr(u2, xixj) = 0 for all i, j.

Hence, you can test specifically for heteroskedasticity that would
invalidate OLS results using

û2 = δ0 +
(
δ1

1x1 + ...+ δ1
k xk

)
+
(
δ2

1x2
1 + ...+ δ2

k x2
k

)
+

(
δ3x1x2 + ...+ δ3

(x
2)

xjxj′

)
+ ε,

testing just as in the BP setting.

If you use the fitted values ŷ , this becomes û2 = δ0 + δ1ŷ + δ2ŷ2 + ε
—hence, can get added power for the test.

Warning! These tests require all other Gauss-Markov assumptions to hold to
be meaningful (have to correctly specify the model)
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5. Weighted Least Squares (WLS)

What is WLS?
• Used before robust standard errors developed
• Requires knowing (or estimating) the form of heteroskedasticity:
σ2h(x) > 0

• Minimizes the weighted sum of squared residuals

If you know the weights:

E

(
ui√
hi

)2

=
E(u2

i )

hi
= σ2

• This corrects SE-bias from heteroskedasticity

• Need only transform your variables by
√

h
−1

and run OLS
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What if you need to estimate h?

Can estimate the form of heteroskedasticity using a (pretty) flexible form:

V[u|x ] = σ2 exp {δ0 + δ1x1 + ...+ δkxk} (1)

(This form ensures predicted variances are positive while maintaining
generality)

Estimation:
1 Rewrite (1) for estimating: u2 = σ2 exp {δ0 + δ1x1 + ...+ δkxk} ν
2 Take logs: log(u) = a0 + δ1x1 + ...+ δkxk + ε

3 Run by OLS, obtain fitted values ĝ

4 Estimated weights are then ĥi = exp(ĝi)
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Chapter 10: Time Series Models
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6. & 7. Time series models

Static Models

yt = β0 + β1xt + ut , t ∈ {1, 2, ...,n}

• Contemporaneous effects only

Finite distributed lag (FDL) models

yt = xtβ + xt−jδ + ut

• Lagged effects on yt

• Nests static models if all δ coefficients are 0
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8. Short- & long-run multipliers

• Coefficients give
immediate impacts
(hence δ0 is impact
multiplier)

• Sum of coefficients⇒
long-run impact (LRP)
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9. Finite sample properties

How does Gauss-Markov work for time series?
• A1 (linear model) and A2 (no colinearity) don’t change
• A3 (strict exogeneity) E[ut |xt1, ..., xtk ] = 0 becomes E[ut |xsj ] = 0 for all s, j

I This is a strong assumption (crime and police presence example)

These three assumptions⇒ OLS is unbiased (proof similar to original)

• A4 (homoskedasticity) doesn’t change
• A5 (no serial correlation—new assumption): Corr(us,ut ) = 0 for all s 6= t

I Similar to the random sampling assumption

Under A1—A5, OLS is BLUE and the SEs are as previously calculated
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10., 11., & 12. Dummies and logarithms

If you have all of the Gauss-Markov assumptions, all of the things you
learned in cross-sectional analyses carry over to time series

log(y)t = β0 + β11{zt > 0}+ δ0xt + δ1xt−1 + ...+ δkxt−k + ut

• β1 estimates the effect of a certain outcome in a given period
I Used to perform event study analysis (how does outcome evolve?)

• δ0 is the short-run elasticity of y with respect to x
• δ0 + δ1 + ...+ δk is the long-run elasticity
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10. Dummy variables
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13. Time trends

• Ignoring time trends⇒ spurious correlations
• Want to detrend if any variable is trending
• Control for this by including t as a regressor, or by an exponential trend

of the form log(y)t = β0 + xtβ + αt + ut (β1 ≈ growth rate)
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14. Seasonality

• Control for seasonality with season dummies—careful of the dummy
variable trap!
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Chapter 11: More on Time Series
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15. Stationarity

To analyze dynamic models, we need an idea of how the random process
evolves over time. The simplest (and strongest) requirement:

The joint dist. of (xt1
, xt2

, ..., xtm) is the same as the dist. of (xt1+h, xt2+h, ..., xtm+h)

• All of a distribution’s moments are constant over time
• Usually very restrictive—can limit to two moments if distribution has a

finite second moment

Covariance/weak stationarity:
1 E[xt ] is constant
2 V[xt ] is constant
3 For all t and h ≥ 1, Cov(xt , xt+h) = g(h) does not depend on t
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16. Weakly dependent time-series

Weak dependence controls how much the distant past controls the present

• Different from stationarity, which discusses joint distributions of
outcomes

Weak Dependence in time series is approximately:

lim
ht→∞

Corr(xt , xt+h) = 0

• Series with this property are referred to as asymptotically uncorrelated
• Both stationarity and dependence are important for inference
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17. Weak dependence: MA(1)

xt = et + α1et−1+α2et−2 + ...+ αqet−q

What makes this weakly dependent?
• Cov(xt , xt+1) = Cov(et + α1et−1,et+1 + α1et ) = α1σ

2
e

• But if you go father, Cov(xt , xt+j) = Cov(et + α1et−1,et+j + α1et+j−1 = 0
• Hence, this process is weakly dependent (and stationary)
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18. Weak dependence: AR(1)

yt = ρ1yt−1 + ρ2yt−2 + ...+ ρpyt−p+et

What makes this weakly dependent?
• Only work with stable processes, so |ρ1| < 1
• Also assume AR(1) is covariance stationary (complicated proof)
• Then V[yt ] = ρ2

1V[yt−1] + σ2
e, and since variance constant: σ2

y = ρ2
1σ

2
y + σ2

e

• Next, solve yt+h backwards: yt+h = ρh
1yt + ρh−1

1 et+1 + ...+ ρ1et+h−1 + et+h
• Multiply both sides by yt and take expectations:

Cov(yt , yt+h) = E
[
ρh

1y2
t + ρh−1

1 et+1yt + ...+ ρ1et+h−1yt + et+hyt

]
= ρh

1σ
2
y

Since |ρ1| < 1, ρh
1 →h→∞ 0!
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19. & 20. Highly persistent series: random walks

If time series are weakly dependent, then Gauss Markov assumptions hold.
But what if they aren’t? What if effects are long-lasting?

A random walk is an AR(1) with ρ1 = 1:

yt = yt−1 + et

• Can show that E[yt ] = E[y0] for all t , but that V[yt ] = σ2
et

• Work on previous slide shows this isn’t weakly dependent either!
• Easy fix—“integrate" out persistence using first differences

∆yt = (yt−1 + et )− (yt−1) = et
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21. Random walks with drift & stationarity

yt = α0 + yt−1 + et

• Now, E[yt ] = α0t + E[y0], so not stationary!
• Again, differencing out linearly works:

∆yt = (α0 + α1yt−1 + et )− yt−1 = α0 + et

As a rule, first differencing is handy. If linear differencing isn’t sufficient, log
differencing usually is:

∆ log(yt ) = log(yt )− log(yt−1)

EC 508: Final Review Alex Hoagland (BU) 27



21. Random walks with drift & stationarity

yt = α0 + yt−1 + et

• Now, E[yt ] = α0t + E[y0], so not stationary!
• Again, differencing out linearly works:

∆yt = (α0 + α1yt−1 + et )− yt−1 = α0 + et

As a rule, first differencing is handy. If linear differencing isn’t sufficient, log
differencing usually is:

∆ log(yt ) = log(yt )− log(yt−1)

EC 508: Final Review Alex Hoagland (BU) 27



22. Integration of time series

Most highly persistent time series are examples of unit root proceses: a mix
of an AR(1) term with ρ = 1 and any weakly dependent process

How do you know if a time series is I(1)?
1 Test the first-order autocorrelation—if ρ1 ≈ 1, you may have a problem

(tests are hard here)
2 Dickey-Fuller test: fit yt = α0 + ρyt−1 + δt and test H0 : ρ = 1
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Chapter 12: Serial Correlation
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23. What happens under serial correlation?

Usually, we are working with a dynamic model of the form

yt = xtβ + y t−hδ + u.

Serial correlation occurs when Cov(ut ,ut+h) 6= 0
• This always messes up your standard errors (similar to heteroskedasticity)
• Also, this might lead to inconsistent parameter estimates if your

dynamic model is not correctly specified
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24. Detecting serial correlation

In general, simplest test is that ut follows an AR(1) process: H0 : ρu = 0.

When all regressors are strictly exogenous:
1 Estimate dynamic model and obtain {ût}
2 Estimate ût = ρût−1 + et

I Note that there is no intercept here

3 Perform a t test for H0

If regressors aren’t strictly exogenous:
1 Same as (1) above
2 Estimate ût = xtβ + ρût−1

3 Perform another t test on ρ̂
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I Note that there is no intercept here

3 Perform a t test for H0

If regressors aren’t strictly exogenous:
1 Same as (1) above
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25. Correcting for serial correlation

We can use feasible GLS to correct for serial correlation if ρ is known (or
estimated):

1 Estimate yt = xtβ and obtain residuals
2 Estimate residual equation (step 2 in one of the methods above) to

obtain ρ̂

3 Quasi-difference your data: z̃t = zt − ρ̂zt−1 for all variables
4 Use OLS to estimate ỹt = x̃tβ + u

In Stata, these are called Cochrane-Orcutt or Prais-Winston estimators
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Questions?
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