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Chapters 5 through 7
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- 10. Dummy variables

y = Bo + X8 + v1{something happens} + u

~ measures the effect of a binary event
Can be many binary events, as long as:

Dummy variable trap: always need an omitted group, or else you have
a problem of perfect multicolinearity
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- 2. Adding variables to a model

Suppose that we are considering adding one more variable to a linear
model—when will the MSE decrease?
Compare MSE, with MSE;:

SSRyr
n—k-2
Hence, the MSE decreases iff
MSE,, < MSE; < (n—k — 2+ 1)MSE, < (n— k — 1)MSE,
< MSEy < (n—k — T)MSEy — (n— k — 2)MSE,
s 1<F

= MSE,,, = SR _ MSE,

—k—-1

Since we are testing inclusion of one new variable, F = 12; hence, MSE
goes down if 12 > 1, orif [1] > 1

EC 508: Final Review Alex Hoagland (BU)



- Other important things

Be able to calculate how OLS estimates change when you scale data
(Section 6.1)

Know how to find optimal points for models with quadratic terms (p.194
in fext)

Understand how to interpret interaction effects (p.198)

Understand difference between R2 and R’ (p.202)
Understand interpretation of linear probability models (Section 7.5)
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Chapter 8: Heteroskedasticity
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- 1. Heteroskedasticity

V[u|x] # o2
Consequences:
B are still unbiased and consistent
R is unchanged

Variances V[3] are now biased — inference breaks down
OLS is no longer BLUE

EC 508: Final Review Alex Hoagland (BU) 7



- 1a. Robust standard errors

Under heteroskedasticity, V[uj|x] = o2
Recall that we can write the regression estimator as

- S = X)2u;
p=F+ SST2
s (X = X)20;
V[3] =
=V ST

This fransformation of the residuals = robust standard errors
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- 3. Breusch-Pagan test

We want to test the null hypothesis of homoskedasticity: Hg : V[u|x] = o2
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- 3. Breusch-Pagan test

We want to test the null hypothesis of homoskedasticity: Hg : V[u|x] = o2
We can rewrite this hypothesis as:
Ho : V[u|x] = 0? < E[L?|x] =0
& E[UP)x, X%,..] =0

<=>U2:50—|—(5]X] + 0oXo + ... + O X + €
<:>H6:5]:...:5k20. ™
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- 3. Breusch-Pagan test

We want to test the null hypothesis of homoskedasticity: Hg : V[u|x] = o2
We can rewrite this hypothesis as:

Ho : V[u|x] = 0? < E[L?|x] =0
& E[UP)x, X%,..] =0

<=>U2:50—|—(5]X] + 0oXo + ... + O X + €
@}7‘[6:5]:...:5/(20. ™

When performed as an LM test (not an F-test), this is the Breusch-Pagan fest
Test statistic: LM = nR2 ~ 2
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- 4. White test

Gauss-Markov still holds as long as Corr(u?, x;) = Corr(U?, x;x;) = 0 for all i, .

Hence, you can test specifically for heteroskedasticity that would
invalidate OLS results using

02 = do + (61]x1 + ... +5,‘<xk> (52x1 + .. +5kxk> + <53x1x2 + .. +5f§)xjxj,> + e

testing just as in the BP setfting.
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- 4. White test

Gauss-Markov still holds as long as Corr(u?, x;) = Corr(U?, x;x;) = 0 for all i, .

Hence, you can test specifically for heteroskedasticity that would
invalidate OLS results using

02 = do + (61]x1 + .. +5,‘<xk> (52x1 + .. +5kxk> + <53x1x2 + .. +55(3§)xjxj,> + e

testing just as in the BP setfting.

If you use the fitted values ¥, this becomes {2 = dg + 61§ + 5292 + €
—hence, can get added power for the test.
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- 4. White test

Gauss-Markov still holds as long as Corr(u?, x;) = Corr(U?, x;x;) = 0 for all i, .

Hence, you can test specifically for heteroskedasticity that would
invalidate OLS results using

02 = do + (61]x1 + .. +5,‘<xk> (52x1 + .. +5kxk) + <53x1x2 + .. +55(3§)xjxj,> + e

testing just as in the BP setfting.

If you use the fitted values ¥, this becomes {2 = dg + 61§ + 5292 + €
—hence, can get added power for the test.

Warning! These tests require all other Gauss-Markov assumptions to hold to
be meaningful (have to correctly specify the model)
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- 5. Weighted Least Squares (WLS)

What is WLS?
Used before robust standard errors developed

Requires knowing (or estimating) the form of heteroskedasticity:
o?h(x) >0
Minimizes the weighted sum of squared residuals
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- 5. Weighted Least Squares (WLS)

What is WLS?
Used before robust standard errors developed

Requires knowing (or estimating) the form of heteroskedasticity:
o?h(x) >0
Minimizes the weighted sum of squared residuals

If you know the weights:
2
g Y ) _ E(4f) _ 2
vh) ~h

This corrects SE-bias from heteroskedasticity

Need only tfransform your variables by ﬁf] and run OLS
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- What if you need to estimate h?

Can estimate the form of heteroskedasticity using a (pretty) flexible form:
V[ulx] = o? exp {dg + 61X1 + ... + 6kXi} M

(This form ensures predicted variances are positive while maintaining
generality)
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- What if you need to estimate h?

Can estimate the form of heteroskedasticity using a (pretty) flexible form:

V[ulx] = o? exp {dg + 61X1 + ... + 6kXi} M
(This form ensures predicted variances are positive while maintaining
generality)
Estimation:

Rewrite (1) for estimating: u? = o2 exp {dg + 01X7 + ... + SXy} v
Take logs: log(u) = ag + 91Xy + ... + dXx + €

Run by OLS, obtain fitted values g

Estimated weights are then A; = exp(&))
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Chapter 10: Time Series Models
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- 6. & 7. Time series models

Static Models

vt = Bo+ Bixs + Uy, te{1,2,....,n}

Contemporaneous effects only
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- 6. & 7. Time series models

Static Models

vt = Bo+ Bixs + Uy, te{1,2,....,n}

Contemporaneous effects only

Finite distributed lag (FDL) models

Yt = Xt + Xt_j0 + Ut

Lagged effects on y;
Nests static models if all § coefficients are O

EC 508: Final Review Alex Hoagland (BU) 14



- 8. Short- & long-run multipliers

coefficient
(8)

Coefficients give
immediate impacts
(hence ¢4 is impact
multiplier)

Sum of coefficients =
long-run impact (LRP)
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- 9. Finite sample properties

How does Gauss-Markov work for time series?

A1l (linear model) and A2 (no colinearity) don’t change
A3 (strict exogeneity) E[ut|X;1, ..., Xi]| = O becomes E[ut|xg] = O for all s,/
This is a strong assumption (crime and police presence example)
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A1l (linear model) and A2 (no colinearity) don’t change
A3 (strict exogeneity) E[ut|X;1, ..., Xi]| = O becomes E[ut|xg] = O for all s,/
This is a strong assumption (crime and police presence example)

These three assumptions = OLS is unbiased (proof similar to original)
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- 9. Finite sample properties

How does Gauss-Markov work for time series?

A1l (linear model) and A2 (no colinearity) don’t change
A3 (strict exogeneity) E[ut|X;1, ..., Xi]| = O becomes E[ut|xg] = O for all s,/
This is a strong assumption (crime and police presence example)

These three assumptions = OLS is unbiased (proof similar to original)

A4 (homoskedasticity) doesn’t change
Ab (no serial correlation—new assumption): Corr(us, uy) = 0 for all s # 1
Similar to the random sampling assumption
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- 9. Finite sample properties

How does Gauss-Markov work for time series?

A1l (linear model) and A2 (no colinearity) don’t change
A3 (strict exogeneity) E[ut|X;1, ..., Xi]| = O becomes E[ut|xg] = O for all s,/
This is a strong assumption (crime and police presence example)

These three assumptions = OLS is unbiased (proof similar to original)

A4 (homoskedasticity) doesn’t change
Ab (no serial correlation—new assumption): Corr(us, uy) = 0 for all s # 1
Similar to the random sampling assumption

Under A1—AS5, OLS is BLUE and the SEs are as previously calculated
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- 10., 11., & 12. Dummies and logarithms

If you have all of the Gauss-Markov assumptions, all of the things you
learned in cross-sectional analyses carry over to fime series
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- 10., 11., & 12. Dummies and logarithms

If you have all of the Gauss-Markov assumptions, all of the things you
learned in cross-sectional analyses carry over to fime series

log(y)t = Bo + B11{zt > O} + doXp + d1Xt_1 + ... + OkX¢p—_k + Uy
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- 10., 11., & 12. Dummies and logarithms

If you have all of the Gauss-Markov assumptions, all of the things you
learned in cross-sectional analyses carry over to fime series

log(y)t = Bo + B11{zt > O} + doXt + 01 Xt—1 + ... + OXp—i + Uy

B, estimates the effect of a certain outcome in a given period
Used to perform event study analysis (how does outcome evolve?)
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- 10., 11., & 12. Dummies and logarithms

If you have all of the Gauss-Markov assumptions, all of the things you
learned in cross-sectional analyses carry over to fime series

log(y)t = Bo + B11{zt > O} + doXt + 01 Xt—1 + ... + OXp—i + Uy

B, estimates the effect of a certain outcome in a given period
Used to perform event study analysis (how does outcome evolve?)

dg is the short-run elasticity of y with respect to x
dg + 07 + ... + i is the long-run elasticity
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- 10. Dummy variables

Probability child was in child safety seat

selection corrected sample

Residual likelihood
1
Il

P

I

—et—
—e—1—i

0
Event Time
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- 13. Time frends

10

0 20 40 60 80 100

Ignoring time frends = spurious correlations

Want to detrend if any variable is trending

Control for this by including t as a regressor, or by an exponential trend
of the form log(y); = Bo + X6 + af + u; (87 = growth rate)
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- 14. Seasonality

Quarterly sales
500

450

400

350
300 -
250
I/
150 4

100 +—+—+——++

Dec83
Jun-84
Dec84
Jun-85
Dec85
Jun85
Dec86
Jun-87
Dec87
Jun-68

Control for seasonality with season dummies—careful of the dummy
variable trap!
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Chapter 11;: More on Time Series
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- 156. Stationarity

To analyze dynamic models, we need an idea of how the random process
evolves over time. The simplest (and strongest) requirement:

The joint dist. of (3, Xy, ..., Xt,,) is The same as the dist. of (X, h, Xt,4hs s Xt 1-h)
All of a distribution’s moments are constant over fime

Usually very restrictive—can limit to two moments if distribution has a
finite second moment
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- 156. Stationarity

To analyze dynamic models, we need an idea of how the random process
evolves over time. The simplest (and strongest) requirement:

The joint dist. of (3, Xy, ..., Xt,,) is The same as the dist. of (X, h, Xt,4hs s Xt 1-h)

All of a distribution’s moments are constant over time

Usually very restrictive—can limit to two moments if distribution has a
finite second moment

Covariance/weak stationarity:
E[x¢] is constant
V[x¢] is constant
Forall t and h> 1, Cov(xs, x;.n) = g(h) does not depend on t
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- 16. Weakly dependent time-series

Weak dependence controls how much the distant past controls the present

Different from stationarity, which discusses joint distributions of
outcomes

Weak Dependence in time series is approximately:

lim Corr(xs, X¢op) =0
hf~>oo

Series with this property are referred to as asymptotically uncorrelated
Both stationarity and dependence are important for inference
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- 17. Weak dependence: MA(1)

Xt =€t + 181+t o+ ... + gCt_g

What makes this weakly dependent?
Cov(xp, X+1) = Cov(er + a6y, 8141 + 1 84) = 103
But if you go father, Cov(xt, xt1j) = Cov(er + ar1€r_1, €14+ ar€ryj—1 =0
Hence, this process is weakly dependent (and stationary)
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- 18. Weak dependence: AR(1)

Yi=p1Yi-1+p2oVi o+ ..+ ppVipt©t
What makes this weakly dependent?
Only work with stable processes, so |p| < 1
Also assume AR(1) is covariance stationary (complicated proof)
Then V[ys] = p3V[y;_1] + 2. and since variance constant: o2 = pfo? + 03

Next, solve y;, , backwards: y;, p = p’fyf + pﬁ"] €ty 1+ ... +P1€11h_1 + €t1h
Multiply both sides by y; and take expectations:

Cov(yt, Virn) =E [0y + o) T eryi + o+ pernays + ef+hyr}

h_2
= pioy
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- 18. Weak dependence: AR(1)

Yi=p1Yi-1+p2oVi o+ ..+ ppVipt©t
What makes this weakly dependent?
Only work with stable processes, so |p| < 1
Also assume AR(1) is covariance stationary (complicated proof)
Then V[ys] = p3V[y;_1] + 2. and since variance constant: o2 = pfo? + 03

Next, solve y;, , backwards: y;, p = p’fyf + pﬁ"] €ty 1+ ... +P1€11h_1 + €t1h
Multiply both sides by y; and take expectations:

Cov(yt, Virn) =E [0y + o) T eryi + o+ pernays + ef+hyr}

h_2
= pioy

Since |p1] < 1. pf —h00 O
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- 19. & 20. Highly persistent series: random walks

If time series are weakly dependent, then Gauss Markov assumptions hold.
But what if they aren’t? What if effects are long-lasting?

A random walk is an AR(T) with p; = 1:

Yt=VYt1+ 6t

Can show that E[y;] = E[yg] for all t, but that V[y;] = o2t
Work on previous slide shows this isn’t weakly dependent either!
Easy fix—"integrate" out persistence using first differences

Ayt = (YVi—1 +€t) — (Vim1) = &r
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- 21. Random walks with drift & stationarity

Yt =00+ Y1+ €

Now, E[y¢] = agt + E[yg]. so not stationary!
Again, differencing out linearly works:

Ay; = (ag+ a1+ €1) — Vi1 =g + &
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- 21. Random walks with drift & stationarity

Yt =0+ V-1 + &

Now, E[y¢] = agt + E[yg]. so not stationary!
Again, differencing out linearly works:

Ay; = (ag+ a1+ €1) — Vi1 =g + &

As a rule, first differencing is handy. If linear differencing isn’t sufficient, log
differencing usually is:

Alog(y:) = log(yt) — log(Vt—1)
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- 22. Integration of time series

Most highly persistent fime series are examples of unit root proceses: a mix

of an AR(1) term with p = 1 and any weakly dependent process
How do you know if a time series is I(1)?

Test the first-order autocorrelation—if py &~ 1, you may have a problem

(tests are hard here)
Dickey-Fuller test: fit y; = ag + py;_1 +dtand test Hg: p =1

. dfuller ln divyield
Dickey-Fuller test for unit root Number of cbs =

Interpclated Dickey-Fuller
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Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
2(t) -2.054 -3.430 -2.860 -2.570
MacKinnon approximate p-value for Z(t) = 0.2635
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Chapter 12: Serial Correlation
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- 23. What happens under serial correlation?

Usually, we are working with a dynamic model of the form

Yt =XtB+ Yi_pd + U
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- 23. What happens under serial correlation?

Usually, we are working with a dynamic model of the form

Yi=XtB+ Yt pd+ U

Serial correlation occurs when Cov(uy, us, p) # 0
This always messes up your standard errors (similar to heteroskedasticity)

Also, this might lead to inconsistent parameter estimates if your
dynamic model is not correctly specified
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- 24. Detecting serial correlation

In general, simplest test is that u; follows an AR(1) process: Hg : pu = 0.

When all regressors are strictly exogenous:
Estimate dynamic model and obtain {{;}
Estimate Uy = pli_1 + e

Note that there is no intercept here
Perform a t test for Hg
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- 24. Detecting serial correlation

In general, simplest test is that u; follows an AR(1) process: Hg : pu = 0.

When all regressors are strictly exogenous:
Estimate dynamic model and obtain {{;}
Estimate Uy = pli_1 + e

Note that there is no intercept here
Perform a t test for Hg

If regressors aren’t strictly exogenous:
Same as (1) above
Estimate Uy = x:8 + pls_;
Perform another t test on p
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- 25. Correcting for serial correlation

We can use feasible GLS to correct for serial correlation if p is known (or
estimated):

Estimate y; = x5 and obtain residuals

Estimate residual equation (step 2 in one of the methods above) to
obtain p

Quasi-difference your data: z; = z; — pz;_; for all variables
Use OLS to estimate y; = X8 + u

In Stata, these are called Cochrane-Orcutt or Prais-Winston estimators

EC 508: Final Review Alex Hoagland (BU) 32



Questions?
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