EC 508: Econometrics

Final Study Guide

Alex Hoagland, Boston University

May 2, 2019

Chapters 5 through 7

EC 508: Final Review

Alex Hoagland (BU) 2

$$y = \beta_0 + \mathbf{x}\beta + \gamma \mathbb{1}\{\text{something happens}\} + u$$

- γ measures the effect of a binary event
- Can be many binary events, as long as:
- **Dummy variable trap**: always need an omitted group, or else you have a problem of **perfect multicolinearity**

2. Adding variables to a model

Suppose that we are considering adding **one more variable** to a linear model—when will the **MSE decrease**?

Compare *MSE*_r with *MSE*_{ur}:

$$\frac{SSR_{ur}}{n-k-2} = MSE_{ur}, \ \frac{SSR_r}{n-k-1} = MSE_r$$

Hence, the MSE decreases iff

$$\begin{aligned} MSE_{ur} &\leq MSE_r \Leftrightarrow (n-k-2+1)MSE_{ur} \leq (n-k-1)MSE_r \\ &\Leftrightarrow MSE_{ur} \leq (n-k-1)MSE_{ur} - (n-k-2)MSE_r \\ &\Leftrightarrow 1 \leq F \end{aligned}$$

3 Since we are testing inclusion of **one** new variable, $F = t^2$; hence, MSE goes down if $t^2 \ge 1$, or if $|t| \ge 1$

- Be able to calculate how OLS estimates change when you scale data (Section 6.1)
- Know how to find optimal points for models with quadratic terms (p.194 in text)
- Understand how to interpret interaction effects (p. 198)
- Understand difference between R^2 and \overline{R}^2 (p.202)
- Understand interpretation of linear probability models (Section 7.5)

Chapter 8: Heteroskedasticity

EC 508: Final Review

Alex Hoagland (BU) 6

$$\mathbb{V}[\boldsymbol{u}|\boldsymbol{x}] \neq \sigma^2$$

Consequences:

- $\hat{\beta}$ are *still* unbiased and consistent
- \overline{R}^2 is unchanged
- Variances $\mathbb{V}[\hat{eta}]$ are now biased ightarrow inference breaks down
- OLS is no longer BLUE

Under heteroskedasticity, $\mathbb{V}[u_i|x_i] = \sigma_i^2$

Recall that we can write the regression estimator as

$$\hat{\beta} = \beta + \frac{\sum_{i} (x_{i} - \overline{x})^{2} u_{i}}{\text{SST}_{x}^{2}}$$
$$\Rightarrow \mathbb{V}[\hat{\beta}] = \frac{\sum_{i} (x_{i} - \overline{x})^{2} \hat{u}_{i}}{\text{SST}_{x}^{2}}$$

This transformation of the residuals = robust standard errors

We want to test the null hypothesis of homoskedasticity: $\mathcal{H}_0: \mathbb{V}[u|x] = \sigma^2$

We want to test the null hypothesis of **homoskedasticity**: \mathcal{H}_0 : $\mathbb{V}[u|x] = \sigma^2$ We can rewrite this hypothesis as:

$$\begin{aligned} \mathcal{H}_{0} : \mathbb{V}[\boldsymbol{u}|\boldsymbol{x}] &= \sigma^{2} \Leftrightarrow \mathbb{E}[\boldsymbol{u}^{2}|\boldsymbol{x}] = 0 \\ \Leftrightarrow \mathbb{E}[\boldsymbol{u}^{2}|\boldsymbol{x}_{1},\boldsymbol{x}_{2},\ldots] = 0 \\ \Leftrightarrow \boldsymbol{u}^{2} &= \delta_{0} + \delta_{1}\boldsymbol{x}_{1} + \delta_{2}\boldsymbol{x}_{2} + \ldots + \delta_{k}\boldsymbol{x}_{k} + \epsilon \\ \Leftrightarrow \mathcal{H}_{0}' : \delta_{1} = \ldots = \delta_{k} = 0. \end{aligned}$$

We want to test the null hypothesis of **homoskedasticity**: \mathcal{H}_0 : $\mathbb{V}[u|x] = \sigma^2$ We can rewrite this hypothesis as:

$$\begin{aligned} \mathcal{H}_{0} : \mathbb{V}[\boldsymbol{u}|\boldsymbol{x}] &= \sigma^{2} \Leftrightarrow \mathbb{E}[\boldsymbol{u}^{2}|\boldsymbol{x}] = 0 \\ \Leftrightarrow \mathbb{E}[\boldsymbol{u}^{2}|\boldsymbol{x}_{1},\boldsymbol{x}_{2},\ldots] = 0 \\ \Leftrightarrow \boldsymbol{u}^{2} &= \delta_{0} + \delta_{1}\boldsymbol{x}_{1} + \delta_{2}\boldsymbol{x}_{2} + \ldots + \delta_{k}\boldsymbol{x}_{k} + \epsilon \\ \Leftrightarrow \mathcal{H}_{0}' : \delta_{1} = \ldots = \delta_{k} = 0. \end{aligned}$$

When performed as an LM test (not an *F*-test), this is the **Breusch-Pagan** test **Test statistic**: $LM = nR_*^2 \sim \chi_k^2$

4. White test

Gauss-Markov still holds as long as $Corr(u^2, x_i) = Corr(u^2, x_i x_j) = 0$ for all *i*, *j*.

Hence, you can test **specifically** for heteroskedasticity that would invalidate OLS results using

$$\hat{\mathcal{U}}^2 = \delta_0 + \left(\delta_1^1 x_1 + \ldots + \delta_k^1 x_k\right) + \left(\delta_1^2 x_1^2 + \ldots + \delta_k^2 x_k^2\right) + \left(\delta^3 x_1 x_2 + \ldots + \delta_{\binom{x}{2}}^3 x_j x_{j'}\right) + \epsilon,$$

testing just as in the BP setting.

4. White test

Gauss-Markov still holds as long as $Corr(u^2, x_i) = Corr(u^2, x_i x_j) = 0$ for all *i*, *j*.

Hence, you can test **specifically** for heteroskedasticity that would invalidate OLS results using

$$\hat{U}^{2} = \delta_{0} + \left(\delta_{1}^{1}x_{1} + \dots + \delta_{k}^{1}x_{k}\right) + \left(\delta_{1}^{2}x_{1}^{2} + \dots + \delta_{k}^{2}x_{k}^{2}\right) + \left(\delta^{3}x_{1}x_{2} + \dots + \delta_{\binom{x}{2}}^{3}x_{j}x_{j'}\right) + \epsilon,$$

testing just as in the BP setting.

If you use the fitted values \hat{y} , this becomes $\hat{u}^2 = \delta_0 + \delta_1 \hat{y} + \delta_2 \hat{y}^2 + \epsilon$ —hence, can get **added power** for the test.

Gauss-Markov still holds as long as $Corr(u^2, x_i) = Corr(u^2, x_i x_j) = 0$ for all *i*, *j*.

Hence, you can test **specifically** for heteroskedasticity that would invalidate OLS results using

$$\hat{\mathcal{U}}^2 = \delta_0 + \left(\delta_1^1 x_1 + \ldots + \delta_k^1 x_k\right) + \left(\delta_1^2 x_1^2 + \ldots + \delta_k^2 x_k^2\right) + \left(\delta^3 x_1 x_2 + \ldots + \delta_{\binom{x}{2}}^3 x_j x_{j'}\right) + \epsilon,$$

testing just as in the BP setting.

If you use the fitted values \hat{y} , this becomes $\hat{u}^2 = \delta_0 + \delta_1 \hat{y} + \delta_2 \hat{y}^2 + \epsilon$ —hence, can get **added power** for the test.

Warning! These tests require all other Gauss-Markov assumptions to hold to be meaningful (have to correctly specify the model)

5. Weighted Least Squares (WLS)

What is WLS?

- Used before robust standard errors developed
- Requires knowing (or estimating) the form of heteroskedasticity: $\sigma^2 h(x) > 0$
- Minimizes the weighted sum of squared residuals

5. Weighted Least Squares (WLS)

What is WLS?

- Used before robust standard errors developed
- Requires knowing (or estimating) the form of heteroskedasticity: $\sigma^2 h(x) > 0$
- Minimizes the *weighted* sum of squared residuals

If you know the weights:

$$\mathbb{E}\left(\frac{u_i}{\sqrt{h_i}}\right)^2 = \frac{\mathbb{E}(u_i^2)}{h_i} = \sigma^2$$

- This corrects SE-bias from heteroskedasticity
- Need only transform your variables by \sqrt{h}^{-1} and run OLS

Can estimate the form of heteroskedasticity using a (pretty) flexible form:

$$\mathbb{V}[\boldsymbol{u}|\boldsymbol{x}] = \sigma^2 \exp\left\{\delta_0 + \delta_1 \boldsymbol{x}_1 + \dots + \delta_k \boldsymbol{x}_k\right\}$$
(1)

(This form ensures predicted variances are positive while maintaining generality)

Can estimate the form of heteroskedasticity using a (pretty) flexible form:

$$\mathbb{V}[\boldsymbol{u}|\boldsymbol{x}] = \sigma^2 \exp\left\{\delta_0 + \delta_1 \boldsymbol{x}_1 + \dots + \delta_k \boldsymbol{x}_k\right\}$$
(1)

(This form ensures predicted variances are positive while maintaining generality)

Estimation:

- **1** Rewrite (1) for estimating: $u^2 = \sigma^2 \exp \{\delta_0 + \delta_1 x_1 + ... + \delta_k x_k\} \nu$
- 2 Take logs: $\log(u) = a_0 + \delta_1 x_1 + ... + \delta_k x_k + \epsilon$
- 4 Estimated weights are then $\hat{h}_i = \exp(\hat{g}_i)$

Chapter 10: Time Series Models

6. & 7. Time series models

Static Models

$$y_t = \beta_0 + \beta_1 x_t + u_t, \ t \in \{1, 2, ..., n\}$$

Contemporaneous effects only

Static Models

$$y_t = \beta_0 + \beta_1 x_t + u_t, \ t \in \{1, 2, ..., n\}$$

Contemporaneous effects only

Finite distributed lag (FDL) models

$$y_t = \mathbf{X}_t \beta + \mathbf{X}_{t-j} \delta + U_t$$

- Lagged effects on y_t
- Nests static models if all δ coefficients are 0

8. Short- & long-run multipliers

- A1 (linear model) and A2 (no colinearity) don't change
- A3 (strict exogeneity) $\mathbb{E}[u_t|x_{t1},...,x_{tk}] = 0$ becomes $\mathbb{E}[u_t|x_{sj}] = 0$ for all s, j
 - This is a strong assumption (crime and police presence example)

- A1 (linear model) and A2 (no colinearity) don't change
- A3 (strict exogeneity) $\mathbb{E}[u_t|x_{t1},...,x_{tk}] = 0$ becomes $\mathbb{E}[u_t|x_{sj}] = 0$ for all s, j
 - This is a strong assumption (crime and police presence example)

These three assumptions \Rightarrow OLS is **unbiased** (proof similar to original)

- A1 (linear model) and A2 (no colinearity) don't change
- A3 (strict exogeneity) $\mathbb{E}[u_t|x_{t1},...,x_{tk}] = 0$ becomes $\mathbb{E}[u_t|x_{sj}] = 0$ for all s, j
 - This is a strong assumption (crime and police presence example)

These three assumptions \Rightarrow OLS is **unbiased** (proof similar to original)

- A4 (homoskedasticity) doesn't change
- A5 (no serial correlation—new assumption): $Corr(u_s, u_t) = 0$ for all $s \neq t$
 - Similar to the random sampling assumption

- A1 (linear model) and A2 (no colinearity) don't change
- A3 (strict exogeneity) $\mathbb{E}[u_t|x_{t1},...,x_{tk}] = 0$ becomes $\mathbb{E}[u_t|x_{sj}] = 0$ for all s, j
 - This is a strong assumption (crime and police presence example)

These three assumptions \Rightarrow OLS is **unbiased** (proof similar to original)

- A4 (homoskedasticity) doesn't change
- A5 (no serial correlation—new assumption): $Corr(u_s, u_t) = 0$ for all $s \neq t$
 - Similar to the random sampling assumption

Under A1—A5, OLS is BLUE and the SEs are as previously calculated

$$\log(y)_{t} = \beta_{0} + \beta_{1} \mathbb{1}\{z_{t} > 0\} + \delta_{0}x_{t} + \delta_{1}x_{t-1} + \dots + \delta_{k}x_{t-k} + u_{t}$$

 $\log(y)_{t} = \beta_{0} + \beta_{1} \mathbb{1}\{z_{t} > 0\} + \delta_{0}x_{t} + \delta_{1}x_{t-1} + \dots + \delta_{k}x_{t-k} + u_{t}$

β1 estimates the effect of a certain outcome in a given period
Used to perform event study analysis (how does outcome evolve?)

 $\log(y)_{t} = \beta_{0} + \beta_{1} \mathbb{1}\{z_{t} > 0\} + \delta_{0}x_{t} + \delta_{1}x_{t-1} + \dots + \delta_{k}x_{t-k} + U_{t}$

- β_1 estimates the effect of a certain outcome in a given period
 - Used to perform event study analysis (how does outcome evolve?)
- δ_0 is the short-run elasticity of y with respect to x
- $\delta_0 + \delta_1 + ... + \delta_k$ is the long-run elasticity

10. Dummy variables

13. Time trends

- Ignoring time trends ⇒ spurious correlations
- Want to detrend if any variable is trending
- Control for this by including t as a regressor, or by an exponential trend of the form log(y)_t = β₀ + x_tβ + αt + u_t (β₁ ≈ growth rate)

14. Seasonality

Control for seasonality with season dummies—careful of the dummy variable trap!

Chapter 11: More on Time Series

EC 508: Final Review

Alex Hoagland (BU) 21

15. Stationarity

To analyze dynamic models, we need an idea of **how** the random process evolves over time. The simplest (and strongest) requirement:

The joint dist. of $(x_{t_1}, x_{t_2}, \dots, x_{t_m})$ is the same as the dist. of $(x_{t_1+h}, x_{t_2+h}, \dots, x_{t_m+h})$

- All of a distribution's moments are constant over time
- Usually very restrictive—can limit to two moments if distribution has a finite second moment

15. Stationarity

To analyze dynamic models, we need an idea of **how** the random process evolves over time. The simplest (and strongest) requirement:

The joint dist. of $(x_{t_1}, x_{t_2}, \dots, x_{t_m})$ is the same as the dist. of $(x_{t_1+h}, x_{t_2+h}, \dots, x_{t_m+h})$

- All of a distribution's moments are constant over time
- Usually very restrictive—can limit to two moments if distribution has a finite second moment

Covariance/weak stationarity:

- $\blacksquare \mathbb{E}[x_t]$ is constant
- $\mathbb{Z} \ \mathbb{V}[x_t]$ is constant
- 3 For all t and $h \ge 1$, $Cov(x_t, x_{t+h}) = g(h)$ does not depend on t

Weak dependence controls how much the distant past controls the present

 Different from stationarity, which discusses joint distributions of outcomes

Weak Dependence in time series is approximately:

 $\lim_{h_t \to \infty} \operatorname{Corr}(x_t, x_{t+h}) = 0$

- Series with this property are referred to as asymptotically uncorrelated
- Both stationarity and dependence are important for inference

$$x_t = e_t + \alpha_1 e_{t-1} + \alpha_2 e_{t-2} + \dots + \alpha_q e_{t-q}$$

What makes this weakly dependent?

- $\operatorname{Cov}(x_t, x_{t+1}) = \operatorname{Cov}(e_t + \alpha_1 e_{t-1}, e_{t+1} + \alpha_1 e_t) = \alpha_1 \sigma_e^2$
- But if you go father, $Cov(x_t, x_{t+j}) = Cov(e_t + \alpha_1 e_{t-1}, e_{t+j} + \alpha_1 e_{t+j-1} = 0$
- Hence, this process is weakly dependent (and stationary)

$$y_t = \rho_1 y_{t-1} + \rho_2 y_{t-2} + \dots + \rho_p y_{t-p} + e_t$$

What makes this weakly dependent?

- Only work with stable processes, so $|\rho_1| < 1$
- Also assume AR(1) is covariance stationary (complicated proof)
- Then $\mathbb{V}[y_t] = \rho_1^2 \mathbb{V}[y_{t-1}] + \sigma_e^2$, and since variance constant: $\sigma_y^2 = \rho_1^2 \sigma_y^2 + \sigma_e^2$
- Next, solve y_{t+h} backwards: $y_{t+h} = \rho_1^h y_t + \rho_1^{h-1} e_{t+1} + ... + \rho_1 e_{t+h-1} + e_{t+h}$
- Multiply both sides by y_t and take expectations:

$$\operatorname{Cov}(\mathbf{y}_{t}, \mathbf{y}_{t+h}) = \mathbb{E}\left[\rho_{1}^{h} \mathbf{y}_{t}^{2} + \rho_{1}^{h-1} \mathbf{e}_{t+1} \mathbf{y}_{t} + \dots + \rho_{1} \mathbf{e}_{t+h-1} \mathbf{y}_{t} + \mathbf{e}_{t+h} \mathbf{y}_{t}\right]$$
$$= \rho_{1}^{h} \sigma_{\mathbf{y}}^{2}$$

$$y_t = \rho_1 y_{t-1} + \rho_2 y_{t-2} + \dots + \rho_p y_{t-p} + e_t$$

What makes this weakly dependent?

- Only work with stable processes, so $|\rho_1| < 1$
- Also assume AR(1) is covariance stationary (complicated proof)
- Then $\mathbb{V}[y_t] = \rho_1^2 \mathbb{V}[y_{t-1}] + \sigma_e^2$, and since variance constant: $\sigma_y^2 = \rho_1^2 \sigma_y^2 + \sigma_e^2$
- Next, solve y_{t+h} backwards: $y_{t+h} = \rho_1^h y_t + \rho_1^{h-1} e_{t+1} + ... + \rho_1 e_{t+h-1} + e_{t+h}$
- Multiply both sides by y_t and take expectations:

$$\operatorname{Cov}(\mathbf{y}_{t}, \mathbf{y}_{t+h}) = \mathbb{E}\left[\rho_{1}^{h} \mathbf{y}_{t}^{2} + \rho_{1}^{h-1} \mathbf{e}_{t+1} \mathbf{y}_{t} + \dots + \rho_{1} \mathbf{e}_{t+h-1} \mathbf{y}_{t} + \mathbf{e}_{t+h} \mathbf{y}_{t}\right]$$
$$= \rho_{1}^{h} \sigma_{\mathbf{y}}^{2}$$

Since
$$|\rho_1| < 1$$
, $\rho_1^h \rightarrow_{h \rightarrow \infty} 0!$

EC 508: Final Review

Alex Hoagland (BU) 25

If time series are **weakly dependent**, then Gauss Markov assumptions hold. But what if they aren't? What if effects are long-lasting?

A random walk is an AR(1) with $\rho_1 = 1$:

$$y_t = y_{t-1} + e_t$$

- Can show that $\mathbb{E}[y_t] = \mathbb{E}[y_0]$ for all t, but that $\mathbb{V}[y_t] = \sigma_{\Theta}^2 t$
- Work on previous slide shows this isn't weakly dependent either!
- Easy fix—"integrate" out persistence using first differences

$$\Delta y_t = (y_{t-1} + e_t) - (y_{t-1}) = e_t$$

21. Random walks with drift & stationarity

$$\mathbf{y}_t = \alpha_0 + \mathbf{y}_{t-1} + \mathbf{e}_t$$

- Now, $\mathbb{E}[y_t] = \alpha_0 t + \mathbb{E}[y_0]$, so not stationary!
- Again, differencing out linearly works:

$$\Delta \mathbf{y}_t = (\alpha_0 + \alpha_1 \mathbf{y}_{t-1} + \mathbf{e}_t) - \mathbf{y}_{t-1} = \alpha_0 + \mathbf{e}_t$$

21. Random walks with drift & stationarity

$$\mathbf{y}_t = \alpha_0 + \mathbf{y}_{t-1} + \mathbf{e}_t$$

- Now, $\mathbb{E}[y_t] = \alpha_0 t + \mathbb{E}[y_0]$, so not stationary!
- Again, differencing out linearly works:

$$\Delta \mathbf{y}_t = (\alpha_0 + \alpha_1 \mathbf{y}_{t-1} + \mathbf{e}_t) - \mathbf{y}_{t-1} = \alpha_0 + \mathbf{e}_t$$

As a rule, **first differencing** is handy. If linear differencing isn't sufficient, **log differencing** usually is:

$$\Delta \log(\gamma_t) = \log(\gamma_t) - \log(\gamma_{t-1})$$

22. Integration of time series

Most highly persistent time series are examples of **unit root proceses**: a mix of an AR(1) term with $\rho = 1$ and any **weakly dependent** process

How do you know if a time series is I(1)?

- Test the first-order autocorrelation—if $\rho_1 \approx 1$, you may have a problem (tests are hard here)
- 2 Dickey-Fuller test: fit $y_t = \alpha_0 + \rho y_{t-1} + \delta t$ and test $\mathcal{H}_0: \rho = 1$

Dickey-Fuller test for unit root			1	Number of obs	-	863
		Interpolated Dickey-Fuller				
Test Statistic	18	Critical Value	5% Critic Value	Critical	10%	Critical Value
				Value		
-2.054		-3.430		-2.860		-2.570
	er test for unit : Test Statistic -2.054	er test for unit root Test 1% Statistic -2.054	er test for unit root ——— Inte Test 1% Critical Statistic Value -2.054 -3.430	er test for unit root Interpola Test 1% Critical 5% Statistic Value -2.054 -3.430	er test for unit root Number of obs 	er test for unit root Number of obs = Interpolated Dickey-Fuller Test 1% Critical 5% Critical 10% Statistic Value Value -2.054 -3.430 -2.860

Chapter 12: Serial Correlation

EC 508: Final Review

Alex Hoagland (BU) 29

Usually, we are working with a dynamic model of the form

$$y_t = \mathbf{x}_t \beta + \mathbf{y}_{t-h} \delta + u.$$

Usually, we are working with a **dynamic model** of the form

$$y_t = \mathbf{x}_t \beta + \mathbf{y}_{t-h} \delta + u.$$

Serial correlation occurs when $Cov(u_t, u_{t+h}) \neq 0$

- This always messes up your standard errors (similar to heteroskedasticity)
- Also, this might lead to inconsistent parameter estimates if your dynamic model is not correctly specified

In general, simplest test is that u_t follows an **AR(1) process**: $\mathcal{H}_0 : \rho_u = 0$.

When all regressors are strictly exogenous:

- **Estimate dynamic model and obtain** $\{\hat{u}_t\}$
- 2 Estimate $\hat{u}_t = \rho \hat{u}_{t-1} + e_t$
 - Note that there is no intercept here
- 3 Perform a *t* test for \mathcal{H}_0

In general, simplest test is that u_t follows an **AR(1) process**: $\mathcal{H}_0 : \rho_u = 0$.

When all regressors are strictly exogenous:

- **I** Estimate dynamic model and obtain $\{\hat{u}_t\}$
- 2 Estimate $\hat{u}_t = \rho \hat{u}_{t-1} + e_t$
 - Note that there is no intercept here
- 3 Perform a *t* test for \mathcal{H}_0

If regressors aren't strictly exogenous:

- Same as (1) above
- 2 Estimate $\hat{u}_t = \mathbf{x}_t \beta + \rho \hat{u}_{t-1}$
- 3 Perform another *t* test on $\hat{\rho}$

We can use **feasible GLS** to correct for serial correlation if ρ is known (or estimated):

- Estimate $y_t = \mathbf{x}_t \beta$ and obtain residuals
- 2 Estimate residual equation (step 2 in one of the methods above) to obtain $\hat{\rho}$
- **3** Quasi-difference your data: $\tilde{z}_t = z_t \hat{\rho} z_{t-1}$ for all variables
- 4 Use OLS to estimate $\tilde{y}_t = \tilde{x}_t \beta + u$

In Stata, these are called Cochrane-Orcutt or Prais-Winston estimators

