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1. Structure of Economic Data

Model:

yit︸︷︷︸
Dependent variable

= β0 + β1x1it + β2x2it + ...+ βkxkit + uit︸ ︷︷ ︸
Independentvariables/regressors

• N observations—randomly sampled
I Why do we need random sampling?
I How might a sampling procedure violate random sampling?

• T periods—time series data
I If T = 1 (fixed point in time), the data is cross-sectional data

• Pooled cross-sections versus panel data:
I Both have repeated variables across observations i and periods t
I If observations are the same over time, it’s a panel
I If not, repeated/pooled cross section
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Chapter 2: Simple Linear Regression
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2. Simple Linear Regression

yi = β0 + β1xi + ui

Assumptions
• E[u] = 0 (WLOG as long as β0 is in the regression)
• E[u|x ] = 0 (mean independence/zero condition mean)

I Allows us to write the population regression function E[y |x ] = β0 + β1x
I Implies that Cov(x ,u) and E[xu] are both 0
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3. Deriving OLS Estimators

E[u] = 0⇒ E[y − β0 − β1x ] = 0 (2.12)
E[xu] = 0⇒ E[x(y − β0 − β1x)] = 0 (2.13)

• Two equations, two unknowns (β0, β1)

• Solve in sample (matching moments):

1
n

n∑
i=1

(yi − β̂0 − β̂1xi) = 0 (2.14)

1
n

n∑
i=1

xi(yi − β̂0 − β̂1xi) = 0 (2.15)

• Can rewrite (2.14) to get:

y − β̂0 − β̂1x = 0⇒ β̂0 = y − β̂1x
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3. Deriving OLS Estimators—continued

Plugging equation for β̂0 into (2.15):

n∑
i=1

xi

[
yi − (y − β̂1x)− β̂1xi

]
= 0

⇒
n∑

i=1

xi(yi − y) = β1

n∑
i=1

xi(xi − x)

Hence, we can write β̂1 as:

β̂1 =

∑
i xi(yi − y)∑
i xi(xi − x)

=

∑
i(xi − x)(yi − y)∑

i(xi − x)2 =

∑
i(xi − x)yi∑
i(xi − x)2
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4. Properties of OLS Estimators

• Regression line must go through (x , y)
•
∑

i ûi =
∑

i xi ûi = 0
• SST = SSE + SSR, where

I SST =
∑

i(yi − y)2

I SSE =
∑

i(ŷi − y)2 (sometimes called regression/model sum of squares)
I SSR =

∑
i û2

i (sometimes called error sum of squares)

• OLS is responsive to changes in units of measurement, but in sensible
ways. How does it respond?
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5. Interpreting Slope Coefficients & 6. “Linear" Estimators

Log-level models:

log(y) = β0 + β1x

Coefficients multiplied by 100 are approximately percentage changes in y

Log-log models:

log(y) = β0 + β1 log(x)

Coefficients are exactly elasticities of y with respect to x

Can you prove these?

• Linear estimators: linear function of data
• Linear regression: linear function of parameters β
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7. & 8. Proofs of Unbiasedness

β̂1 =

∑
i(xi − x)yi∑
i(xi − x)2 =

∑
i(xi − x)(β0 + β1xi + ui)∑

i(xi − x)2 ,

=
β0
∑

i(xi − x) + β1
∑

i xi(xi − x) +
∑

i ui(xi − x)∑
i(xi − x)2 ,

=
0 + β1

∑
i(xi − x)2 +

∑
i ui(xi − x)∑

i(xi − x)2 ,

= β1 +

∑
i ui(xi − x)∑
i(xi − x)2

Hence, E[β̂1] = β1 (can show β0 is unbiased easily from this).
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8. General proofs of (un)biasedness

1 Choose a good formula for regression coefficient (partialled out, etc.)
2 Plug in true linear model
3 Distribute summation
4 Simplify using properties of sums/residuals
5 Take expectation
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7. & 9. Deriving Variance of β1

Homoskedasticity Assumption: Var(u|x) = σ2

Using above algebra,

V[β̂1] = V
[
β1 +

∑
i ui(xi − x)∑
i(xi − x)2

]
,

= 0+V
[∑

i ui(xi − x)∑
i(xi − x)2

]
,

=

∑
i V [ui ] (xi − x)2(∑

i(xi − x)2
)2 ,

=
σ2∑

i(xi − x)2(∑
i(xi − x)2

)2 =
σ2∑

i(xi − x)2
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10. Estimating σ2

An unbiased estimator of V[u] would be 1
n
∑

i u2
i , but these are unobserved.

Instead:
1 Use residuals instead of sample errors: σ̂2 = 1

n
∑

i û2
i (this is biased)

2 Correct with a degree of freedom adjustment: s2 = 1
n−2

∑
i û2

i

Standard Errors:
• Standard error of the regression: s =

√
s2 (RMSE)

I Estimates standard deviation of unobservables affecting y or sd(y |x)
• Standard error of coefficients: se(β̂1) =

s√
SSTx

(comes from square root of
previous slide)

I What do we learn from standard errors?
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11. Regression Through the Origin

What if we ignore the constant term?

β̃1 =

∑
i xiyi∑
i x2

i

• Biased if β0 6= 0
• May reduce variance of β̃1

• R2 may be negative here—What would this mean?
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Chapter 3: Multiple Regression Analysis
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12. & 13. MLR and its Interpretation

yi = β0 + β1x1i + ...+ βkxki + ui

• How do you interpret βi?
• Estimators derived in the same way (easier with matrix algebra)
• Key assumption: E[u|x1, ..., xk ] = 0

I Other factors affecting y are not related (on average) to x’s

Partialled out formula for β1:

β̂1 =

∑
i r̂i1yi∑
i r̂2

i1

, (3.22)

where r̂i1 are the residuals from regressing x1 on all other x’s
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14. Goodness of Fit

Can define SST, SSE, and SSR in the same way. Then

R2 =
SSE
SST

= 1− SSR
SST

What happens to R2 when you add variables to a regression?

• How does this affect the interpretation of R2 in multiple regression?
• Should you judge a regression based on its R2?
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15. Unbiasedness in MLR

β̂1 =

∑
i r̂i1(β0 + β1xi1 + ...+ βkxik + ui)∑

i r̂2
i1

,

=
β0
∑

i r̂i1 + β1
∑

i r̂i1xi1 + ...+ βk
∑

i r̂i1xik +
∑

i r̂i1ui∑
i r̂2

i1

,

=
0 + β1

∑
i r̂i12 + 0 +

∑
i r̂i1ui∑

i r̂2
i1

,

= β1 +

∑
i r̂i1ui∑

i r̂2
i1

,

⇒E[β̂1] = β1
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16. MLR Assumptions

Gauss-Markov Assumptions:
• Conditional Mean Assumption: E[u|x1, ..., xk ] = 0
• Linear in Parameters: The true model is y = β0 + β1x1 + ...+ βkxk + u
• Random Sampling: Need a representative sample
• No Linear Relationships in Data: (no perfect multicolinearity)
• Homoskedasticity: V[u] = σ2
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17. Omitted Variable Bias

If a variable xj is omitted from the regression:

β̂1 =

∑
i r̂i1(β0 + β1xi1 + ...+ βkxik + ui)∑

i r̂2
i1

,

=
0 + β1

∑
i r̂i12 + βj

∑
i r̂i1xij +

∑
i r̂i1ui∑

i r̂2
i1

,

= β1 +
βj
∑

i r̂i1xij +
∑

i r̂i1ui∑
i r̂2

i1

,

⇒E[β̂1] = β1+βj

∑
i r̂i1xij∑

i r̂2
i1

In general, β̃i = β̂i + β̂2δ̃
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18. Variance of βi in MLR

V[β̂j ] =
σ2

SSTj(1− R2
j )
,

where SSTj =
∑

i(xij − x j)
2 and R2

j is from the regression of xj on all other x’s

If you add more regressors, how does this variance change?

• Variance of the regression, σ2 should go down
• SSTj won’t change (sidenote: what do we want this to look like?)

• R2
j will weakly increase

• Hence both numerator and denominator decrease, so variance may
change in either direction
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19. Multicolinearity

Formally, R2
j = 1 violates assumptions. Informally, R2

j → 1 causes what bad
things?.

• Perfect multicolinearity only exists with algebraic relationships
• High colinearity can always be solved by obtaining more data

(“micronumerosity")
• Some stats exist to “diagnose", but are almost always misused
• Conclusion: don’t use these in your own analysis, only for the test

Variance Inflation Factor:

VIFj =
1

1− R2
j

= V[β̂1]
SSTj

σ2

EC 508: Midterm Review Alex Hoagland (BU) 21



20. Detecting multicolinearity

When does the VIF matter?
1 If we need xj to infer causality of xi on y , have to deal with colinearity
2 If parameter of interest is βi , then the VIF’s of βj’s don’t matter
3 Arbitrary VIF cutoffs don’t help because they are highly dependent on

sample size and sample variation
Conclusion: VIF is rarely used in practice (for the test, VIF > 10 is good rule)
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21. Estimating σ2 in MLR

An unbiased estimator of V[u] would be 1
n
∑

i u2
i , but these are unobserved.

Instead:
1 Use residuals instead of sample errors: σ̂2 = 1

n
∑

i û2
i (this is biased)

2 Correct with a degree of freedom adjustment: s2 = 1
n−k−1

∑
i û2

i

Standard Errors:
• Standard error of the regression: s =

√
s2 (RMSE)

I Can increase or decrease when adding regressors based on how SSR
changes relative to degrees of freedom

• Standard error of coefficients: se(β̂1) =
s√

SSTj(1−R2
j )

I Standard errors are inconsistent under heteroskedasticity
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22. Gauss Markov Theorem

OLS is the best linear unbiased estimator (BLUE):

• What is a linear estimator?
• Unbiased: E[β̃j ] = βj

• Best: having the smallest asymptotic variance
I Why is this desirable?
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Chapter 4: Inference for Linear Regression
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23. Sampling distributions of OLS

Normality assumption: u ∼ N (0, σ2)

• Simplifying assumption—not needed in practice with large N
• Why make it?

Under the normality assumption:

β̂j ∼ N (βj ,V[βj ])

⇒

(
β̂j − βj√
V[βj ]

)
∼ N (0, 1)

• Any linear combination of β’s is normally distributed
• Any subset of β’s is jointly normally distributed
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24. Testing a single coefficient in MLR

If we use estimate of σ2 (swapping sd for standard error):(
β̂j − βj

se(β̂j)

)
∼ tn−k−1

Hence we can test hypotheses of the form H0 : βj = c against H1 : βj 6= c
using the following:

1 Specify null and alternative hypotheses (1- or 2-sided?) and α

2 Calculate test statistic above
3 Find p-value from computer or comparable t-stat from table
4 Interpret result (do we reject? What can we conclude about βj?)
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24. Testing a single coefficient continued
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25. Confidence intervals for βi

Dual version of hypothesis testing:

CI(β̂j) = β̂j ± cα ∗ se(β̂j)

• cα comes from table in previous slide
• If confidence interval overlaps with c, cannot reject H0 at specified α

• How do we interpret a confidence interval?
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26. Testing linear combinations

Can we expand tests to H0 : θ = 0, where θ is a linear combination of β’s?
1 Specify H0, H1, and α (WLOG can set θ = 0)
2 Estimate se(θ) with transformed regression

1 Rewrite H0 in terms of one β
2 Plug in to original regression equation and simplify
3 Estimate transformed model to get correct se(θ)

3 Evaluate test stat: θ̂/se(θ̂)
4 Find corresponding p-value (or t-stat from table)
5 Interpret result (do we reject? How do we unpack θ?)
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27. & 28. Testing multiple linear restrictions

Now, we want to test multiple parameters at once (not just linear combo)
e.x.: H0 : β3 = β4 = β5 = 0

1 Specify H0, α, and H1 (βi 6= 0 for at least one i)
2 Estimate restricted and unrestricted models
3 Compute F-statistic:

F =
(SSRr − SSRur)/q
SSRur/(n− k − 1)

=
(R2

ur − R2
r )/q

(1− R2
ur)/(n− k − 1)

,

where q is the number of restrictions
I Note: F ≥ 0 always—something’s off if you get a negative stat

4 Look up F stat using table; df: (q,n− k − 1)
5 Interpret accordingly (careful of what rejection implies)

EC 508: Midterm Review Alex Hoagland (BU) 31



29. Relationship between F- and t-stats

Why are we testing different things?
• Square of t stat is the F stat—hence, the two approaches are

equivalent in single tests
• t-stat allows for one-sided tests directly (more flexible)
• Plus they’re less work to calculate
• One caveat: it is possible to have β1 6= 0 and β1 = ... = βk = 0 if you

throw in enough garbage
• Testing should be well-motivated
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30. F-stats for overall regression

If the model includes k regressors, we are testing

H0 : β1 = ... = βk = 0
H1 : βi 6= 0 for at least one i

1 Specify α
2 Estimate unrestricted model

I Restricted model is just y , which has R2 = 0
3 Calculate F test stat:

F =
R2/k

(1− R2)/(n− k − 1)

4 Compare with F-stat from table
5 Interpret
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31. Testing general linear restrictions

• Comes down to correct estimation of restricted model
• Same procedure as before
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Questions?
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