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- 1. Structure of Economic Data

Model:
Vit = fo + B1Xir + BoXoit + oo + BiXir + Uit
Dependent variable Independentvariables/regressors
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- 1. Structure of Economic Data

Model:
Vit = fo + B1Xir + BoXoit + oo + BiXir + Uit
Dependent variable Independentvariables/regressors

N observations—randomly sampled

Why do we need random sampling?
How might a sampling procedure violate random sampling?

T periods—time series data
If T =1 (fixed point in time), the data is cross-sectional data
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- 1. Structure of Economic Data

Model:
Vit = fo + B1Xir + BoXoit + oo + BiXir + Uit
Dependent variable Independentvariables/regressors

N observations—randomly sampled

Why do we need random sampling?
How might a sampling procedure violate random sampling?

T periods—time series data
If T =1 (fixed point in time), the data is cross-sectional data
Pooled cross-sections versus panel data:

Both have repeated variables across observations i and periods t
If observations are the same over time, it's a panel
If not, repeated/pooled cross section
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Chapter 2: Simple Linear Regression
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- 2. Simple Linear Regression

Yi=Bo+ 51X+ U

Assumptions
E[u] = 0 (WLOG as long as g is in the regression)

E[u|x] = 0 (mean independence/zero condition mean)

Allows us to write the population regression function E[y|x] = Bo + S1X
Implies that Cov(x, u) and E[xu] are both 0
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- 3. Deriving OLS Estimators

Elu =0=E[y — o — p1x] =0 2.12)
Exul =0=E[x(y — o — 81x)] =0 (2.13)
Two equations, two unknowns (g, 51)
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- 3. Deriving OLS Estimators

Elu =0=E[y — o — p1x] =0 2.12)

Efxu] =0 = E[x(y — o — 51X)] =0 2.13)
Two equations, two unknowns (g, 51)
Solve in sample (mo’rching moments):

fZ — Bo— Brixi) = (2.14)

—Zx, ~bBo—Bix)=0 (2.15)
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- 3. Deriving OLS Estimators

Elu =0=E[y — o — p1x] =0 2.12)

Efxu] =0 = E[x(y — o — 51X)] =0 2.13)
Two equations, two unknowns (g, 51)
Solve in sample (mo’rching moments):

fZ — Bo— Brixi) = (2.14)

—Zx, ~bBo—Bix)=0 (2.15)

Can rewrite (2.14) to get:
Y—Bo-BXx=0=Po=y - Hix
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- 3. Deriving OLS Estimators—continued

Plugging equation for 3y into (2.15):
n ~ ~
> X [Vi (V= 5X) - ﬂm} =0
i=1
n n
= X(vi—¥) =51 > x(%—X)
i=1 i=1

Hence, we can write /3, as:

Coxyi=y) 2 =xX)Yi—Y) i = X)Y;

hi = Yix(xi—X)  Si—x)2 i —X)?
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- 4. Properties of OLS Estimators

Regression line must go through (X, y)

ilUi=3x0=0
SST = SSE + SSR, where
SST=3/(vi = V)

SSE = 3",(Vi — ¥)? (sometimes called regression/model sum of squares)
SSR =3~ &2 (sometimes called error sum of squares)

OLS is responsive to changes in units of measurement, but in sensible
ways. How does it respond?
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- 5. Interpreting Slope Coefficients & 6. “Linear" Estimators

Log-level models:

log(y) = Bo + B1X

Coefficients multiplied by 100 are approximately percentage changes in y
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- 5. Interpreting Slope Coefficients & 6. “Linear" Estimators
Log-level models:

log(y) = Bo + B1X

Coefficients multiplied by 100 are approximately percentage changes in y
Log-log models:

log(y) = Bo + S log(x)

Coefficients are exactly elasticities of y with respect to x

Can you prove these?
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- 5. Interpreting Slope Coefficients & 6. “Linear" Estimators
Log-level models:

log(y) = Bo + B1X

Coefficients multiplied by 100 are approximately percentage changes in y
Log-log models:

log(y) = Bo + S log(x)

Coefficients are exactly elasticities of y with respect to x

Can you prove these?

Linear estimators: linear function of data
Linear regression: linear function of parameters 3
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- 7. & 8. Proofs of Unbiasedness

By = i =X)yi >0 —X)(Bo + Bixi + Uj)
TR -x2 > (X — X)? ’

Hence, E[3;] = 81 (can show fy is unbiased easily from this).
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- 7. & 8. Proofs of Unbiasedness

2 =X)yi (% = X)(Bo + 81X + Uj)

A= S xP (X — X)2 ’
B i = X) 4 B i Xi(x — X) + 37 Ui(X — X)
a > —X)? 7

Hence, E[3;] = 81 (can show fy is unbiased easily from this).
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- 7. & 8. Proofs of Unbiasedness

_ i =Xy 206 —X)(Bo + BrXi + uj)

S S 7 S Y (TR
_ P2 = X) + B 20 %06 = X) + 30 Ui — X)
>i(xi —X)? ’
048 206 = X)? + 32 ui(x — X)
>oi(% = X)? ’

Hence, E[Bﬂ = 3 (can show [ is unbiased easily from this).
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- 7. & 8. Proofs of Unbiasedness

il =Xy _ > = X)(Bo + Bixi + ui)

S S 7 S Y (TR
_ P2 = X) + B 20 %06 = X) + 30 Ui — X)
>i(xi —X)? ’
048 206 = X)? + 32 ui(x — X)
>oi(% = X)? ’
i Ui X — X
-+

Hence, E[Bﬂ = 3 (can show [ is unbiased easily from this).
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- 8. General proofs of (un)biasedness

Choose a good formula for regression coefficient (partialled out, etc.)
Plug in true linear model

Distribute sumnmation

Simplify using properties of sums/residuals

Take expectation
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- 7. & 9. Deriving Variance of 3,

Homoskedasticity Assumption: Var(u|x) = o2
Using above algebra,

A1 > Uil —X)
V(] =V BH—W ;
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- 7. & 9. Deriving Variance of 3,

Homoskedasticity Assumption: Var(u|x) = o2
Using above algebra,
A > Ui(Xi — X)
A\ =V + =5
Ui(X — X)
Yo% = X)?

9

Y
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- 7. & 9. Deriving Variance of 3,

Homoskedasticity Assumption: Var(u|x) = o2

Using above algebra,

VI = v |+ ST
_ > Uilxi —X)
=0y [ > (% — )2

_ 2 VIu) (xi —x)?

(Zi(Xi - 7)2)2 7
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- 7. & 9. Deriving Variance of 3,

Homoskedasticity Assumption: Var(u|x) = o2
Using above algebra,

_ > UilXi — X)

=0V [ S

_ 2 VIu) (xi —x)?
(Zi(Xi - 7)2)2 7

I

9

Y
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- 10. Estimating o2

An unbiased estimator of V[u] would be ln > u,2, but these are unobserved.
Instead:

Use residuals instead of sample errors: 2 = 1 5, 07 (this is biased)
Correct with a degree of freedom adjustment: 2 = —15 3~ 02
Standard Errors:
Standard error of the regression: s = v/s2 (RMSE)
Estimates standard deviation of unobservables affecting y or sd(y|x)
Standard error of coefficients: se(3;) = (comes from square root of

previous slide)
What do we learn from standard errors?

\/SST
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- 11. Regression Through the Origin

What if we ignore the constant term?
B = Do XiYi
> X7

Biased if 55 # 0
May reduce variance of 3,
R? may be negative here—What would this mean?
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Chapter 3: Mulfiple Regression Analysis
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- 12. & 13. MLR and its Interpretation

Yi=Bo+ B1Xyi+ ... + BuXui + U

How do you interpret 3,7

Estimators derived in the same way (easier with matrix algebra)
Key assumption: E[u|xy,...,Xx] =0
Other factors affecting y are not related (on average) to x’s
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- 12. & 13. MLR and its Interpretation

Yi=Bo+ B1Xyi+ ... + BuXui + U

How do you interpret 3,7
Estimators derived in the same way (easier with matrix algebra)
Key assumption: E[u|x1,...,xx] =0

Other factors affecting y are not related (on average) to x’s

Partialled out formula for 5;:

3 TnYi
B = ol (3.22)
>l
where T, are the residuals from regressing x; on all other x’s
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- 14. Goodness of Fit

Can define SST, SSE, and SSR in the same way. Then

SSE SSR
2 —_ — = R —
= SST ] SST

What happens to R2 when you add variables to a regression?
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- 14. Goodness of Fit

Can define SST, SSE, and SSR in the same way. Then

SSE SSR

2 _ O, o9k
R_SST ] SST

What happens to R2 when you add variables to a regression?
How does this affect the interpretation of R? in multiple regression?
Should you judge a regression based on its R2?
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- 15, Unbicsedness in MLR

_ Z;fn(ﬁo + B1Xin + ... + BrXi + Uj)

By A
>t 7
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- 15, Unbicsedness in MLR

_ ZI?H(BO + B1Xin + ... + BrXi + Uj)
i |
_ Bod it + 81X Tnxin + oo+ B i tnX + > T Ui
>t ’

by
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- 15, Unbicsedness in MLR

it (Bo + Bixp + - 4 BiXi + Uj)
>t 7
_ Bodifn + B2 TnXin 4 A+ B 3T X+ 32T U
>t
_0+5 >’ +O+Z,r,1u,
>t

b=
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- 15, Unbicsedness in MLR

b
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1 =

>t (Bo+ Bixin + - + BiXic + Up)

>t 7
_ Bodifn + B2 TnXin 4 A+ B 3T X+ 32T U:

>t
_0+5 > ifn? +O+Z,r,1u,
>t
erﬂul
R

=M+
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- 15, Unbicsedness in MLR

>t (Bo+ Bixin + - + BiXic + Up)

B = 5,72 ;
_ Bodifn + B X A+ 4 B DT X+ 30T i
>t
_0+5 >’ +0+Z,fnu/
>t
=/ + Zir'A]Qu',
i
=E[3] = B
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- 16. MLR Assumptions

Gauss-Markov Assumptions:
Conditional Mean Assumption: E[u|xy, ..., Xx] =0
Linear in Parameters: The true model is y = 5o + 51X7 + ... + BiXie + U
Random Sampling: Need a representative sample
No Linear Relationships in Data: (no perfect multicolinearity)
Homoskedasticity: V[u] = o2
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- 17. Omitted Variable Bias

If a variable x; is omitted from the regression:

_ 2iln(Bo+ BriXin + - + BieXix + Ui)
>t

b

In general, 5, = 5 + (56
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>t ’

_0+5 St + 50 g+ ity
it ’
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- 17. Omitted Variable Bias

If a variable x; is omitted from the regression:

>oitn(Bo+ Bixin + -+ BuXi + Up)

pr = 5 72 ;
O ‘1‘61 Z/rﬂ + 5} Z/ rI]XIj + Z/ rl]ul
>t
=B+ 6} E/r/]Xu‘i‘Z/r/]U/’
it

In general, 5, = 5 + (56
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- 17. Omitted Variable Bias

If a variable x; is omitted from the regression:

>oitn(Bo+ Bixin + -+ BuXi + Up)

pr = 5 72 ;
0‘1‘61 Z/rﬂ +5;Z,anu+E,fnU:
>t
=B+ 6} E/ I Xj + Z/ Ii1 U/
it
>oifinxg

=E[B] = fi+5; 2

i’
In general, 5, = 5 + (6
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- 18. Variance of g; in MLR

o2

V(B = m,

where SST; = 37,(x; — X;)? and R? s from the regression of x; on all other x’s
If you add more regressors, how does this variance change?
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- 18. Variance of g; in MLR

o2

V[ﬁj] = m»

where SST; = 3 (X — YJ)Q and I?j2 is from the regression of x; on all other x’s
If you add more regressors, how does this variaonce change?

Variance of the regression, o2 should go down

SST; won'’t change (sidenote: what do we want this fo look like?)

I?j2 will weakly increase

Hence both numerator and denominator decrease, so variance may
change in either direction
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- 19. Multicolinearity

Formally, R2 = 1 violates assumptions. Informally, /?j? — 1 causes what bad
things”?.

Perfect multicolinearity only exists with algebraic relationships

High colinearity can always be solved by obtaining more data
("micronumerosity")

Some stats exist to “diagnose’, but are almost always misused
Conclusion: don’t use these in your own analysis, only for the test

Variance Inflation Factor:

1 ,
VIF = ——— = VI3i]

J

SST;

o2
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- 20. Detecting mulficolinearity

When does the VIF matter?
If we need x; to infer causality of x; on y, have to deal with colinearity
If parameter of interest is 3;, then the VIF’s of g;’s don’t matter

Arbitrary VIF cutoffs don’t help because they are highly dependent on
sample size and sample variation

Conclusion: VIF is rarely used in practice (for the test, VIF > 10 is good rule)
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- 21, Estimating o2 in MLR

An unbiased estimator of V[u] would be ln >, U2, but these are unobserved.
Instead:

Use residuals instead of sample errors: 62 = 1 37, 07 (this is biased)
Correct with a degree of freedom adjustment: s2 = —— >, 7
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- 21, Estimating o2 in MLR

An unbiased estimator of V[u] would be ln >, U2, but these are unobserved.
Instead:

Use residuals instead of sample errors: 62 = 1 37, 07 (this is biased)

Correct with a degree of freedom adjustment: s2 = —— >, 7

Standard Errors:
Standard error of the regression: s = v/s2 (RMSE)
Can increase or decrease when adding regressors based on how SSR
changes relative to degrees of freedom

Standard error of coefficients: se(f1) = ————
\/SST(1-R?)

Standard errors are inconsistent under heteroskedasticity
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- 22. Gauss Markov Theorem

OLS is the best linear unbiased estimator (BLUE):

What is a linear estimator?

Unbiased: E[3] = 8

Best: having the smallest asymptoftic variance
Why is this desirable?
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Chapter 4: Inference for Linear Regression
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- 23. Sampling distributions of OLS

Normality assumption: u ~ N(0, o?)
Simplifying assumption—not needed in practice with large N
Why make it?
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- 23. Sampling distributions of OLS

Normality assumption: u ~ N(0, o?)
Simplifying assumption—not needed in practice with large N
Why make it?

Under the normality assumption:
B~ N (8, VIB])
Bi — B;
= =] ~N(,1)
( Vv VBl
Any linear combination of 3°s is normally distributed
Any subset of ’s is jointly normally distributed
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- 24. Testing a single coefficient in MLR

If we use estimate of o2 (swapping sd for standard error):

(ﬂj ﬁj) ~ Tk
e(5) o

Hence we can test hypotheses of the form Hg : §; = c against H; : ; # C
using the following:

Specify null and alternative hypotheses (1- or 2-sided?) and «
Calculate test statistic above

Find p-value from computer or comparable t-stat from table
Interpret result (do we reject? What can we conclude about 3;7?)
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- 24. Testing a single coefficient continued

TABLE G.2 Critical Values of the ¢ Distribution

EC 508: Midterm Review

Significance Level
1-Tailed: .10 .05 .025 .01 .005
2-Tailed: .20 .10 .05 .02 .01
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
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- 25. Confidence intervals for ;

Dual version of hypothesis testing:

Cl(B)) = B + ca *se(5))

C, comes from table in previous slide
If confidence interval overlaps with ¢, cannot reject Hy at specified «
How do we interpret a confidence interval?
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- 26. Testing linear combinations

Can we expand tests to Hg : 6 = 0, where 6 is a linear combination of 3’s?
Specify Hg, Hy1, and a (WLOG can set § = 0)
Estimate se(6) with tfransformed regression

Rewrite Hg in terms of one 3
Plug in to original regression equation and simplify
Estimate transformed model to get correct se(0)

Evaluate test stat: d/se(0)
Find corresponding p-value (or f-stat from table)
Interpret result (do we reject? How do we unpack 67?)
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- 27. & 28. Testing multiple linear restrictions

Now, we want to test multiple parameters at once (not just linear combo)
ex:Hg:f3=P01=08=0

Specify Hp, o, and H; (8; # O for at least one 1)

Estimate restricted and unrestricted models

Compute F-statistic:

(SR —SSRuw)/a _ (R% — R®)/q
T SSRu/(n—k—1)  (1-R3)/(n—k—1)’

F

where g is the number of restrictions
Note: F > 0 always—something’s off if you get a negative stat

Look up F stat using table; df: (g, n—k — 1)
Interpret accordingly (careful of what rejection implies)
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- 29. Relationship between F- and f-stats

Why are we testing different things?

Square of f stat is the F stat—hence, the two approaches are
equivalent in single tests

t-stat allows for one-sided tests directly (more flexible)
Plus they're less work to calculate

One caveat: it is possible to have g, #0and g = ... = 8¢ = 0if you
throw in enough garbage

Testing should be well-motivated
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- 30. F-stats for overall regression

If the model includes k regressors, we are testing

Ho:Br=...=8=0
H, : B # O for at least one i

Specify a
Estimate unrestricted model
Restricted model is just y, which has R =0

Calculate F test stat:

B R? /k

(O -R)/(n—k-T1)
Compare with F-stat from table

Interpret

F
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- 31. Testing general linear restrictions

Comes down to correct estimation of restricted model
Same procedure as before
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Questions?
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