EC 508: Econometrics

Midterm Study Guide

Alex Hoagland, Boston University

March 7, 2019

1. Structure of Economic Data

Model:

$$\underbrace{y_{it}}_{\text{Dependent variable}} = \underbrace{\beta_0 + \beta_1 x_{1it} + \beta_2 x_{2it} + \ldots + \beta_k x_{kit} + u_{it}}_{\text{Independent variables/regressors}}$$

1. Structure of Economic Data

Model:

$$\underbrace{y_{it}}_{\text{Dependent variable}} = \underbrace{\beta_0 + \beta_1 x_{1it} + \beta_2 x_{2it} + \ldots + \beta_k x_{kit} + u_{it}}_{\text{Independent variables}/regressors}$$

Independentvariables / regressors

- N observations—randomly sampled
 - Why do we need random sampling?
 - How might a sampling procedure violate random sampling?
- T periods—time series data
 - \blacktriangleright If T = 1 (fixed point in time), the data is cross-sectional data

1. Structure of Economic Data

Model:

$$\underbrace{V_{it}}_{\text{Dependent variable}} = \underbrace{\beta_0 + \beta_1 x_{1it} + \beta_2 x_{2it} + \ldots + \beta_k x_{kit} + u_{it}}_{\text{Independent variables}/regressors}$$

Independent variables / regressors

- N observations—randomly sampled
 - Why do we need random sampling?
 - How might a sampling procedure violate random sampling?
- T periods—time series data
 - \blacktriangleright If T = 1 (fixed point in time), the data is cross-sectional data
- Pooled cross-sections versus panel data:
 - Both have repeated variables across observations i and periods t
 - If observations are the same over time, it's a panel
 - If not, repeated/pooled cross section

Chapter 2: Simple Linear Regression

EC 508: Midterm Review

$$y_i = \beta_0 + \beta_1 x_i + U_i$$

Assumptions

- $\mathbb{E}[u] = 0$ (WLOG as long as β_0 is in the regression)
- $\mathbb{E}[u|x] = 0$ (mean independence/zero condition mean)
 - ▶ Allows us to write the population regression function $\mathbb{E}[y|x] = \beta_0 + \beta_1 x$
 - ▶ Implies that Cov(x, u) and $\mathbb{E}[xu]$ are both 0

3. Deriving OLS Estimators

$$\mathbb{E}[u] = 0 \Rightarrow \mathbb{E}[y - \beta_0 - \beta_1 x] = 0$$
(2.12)

$$\mathbb{E}[xu] = 0 \Rightarrow \mathbb{E}[x(y - \beta_0 - \beta_1 x)] = 0$$
(2.13)

• Two equations, two unknowns (β_0, β_1)

3. Deriving OLS Estimators

$$\mathbb{E}[u] = 0 \Rightarrow \mathbb{E}[\gamma - \beta_0 - \beta_1 x] = 0$$
(2.12)

$$\mathbb{E}[xu] = 0 \Rightarrow \mathbb{E}[x(y - \beta_0 - \beta_1 x)] = 0$$
(2.13)

- Two equations, two unknowns (β_0, β_1)
- Solve in sample (matching moments):

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$
(2.14)
$$\frac{1}{n} \sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$
(2.15)

3. Deriving OLS Estimators

$$\mathbb{E}[u] = 0 \Rightarrow \mathbb{E}[y - \beta_0 - \beta_1 x] = 0$$
(2.12)

$$\mathbb{E}[xu] = 0 \Rightarrow \mathbb{E}[x(y - \beta_0 - \beta_1 x)] = 0$$
(2.13)

- Two equations, two unknowns (β_0, β_1)
- Solve in sample (matching moments):

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$
(2.14)
$$\frac{1}{n} \sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$
(2.15)

• Can rewrite (2.14) to get:

$$\overline{\mathbf{y}} - \hat{\beta}_0 - \hat{\beta}_1 \overline{\mathbf{x}} = \mathbf{0} \Rightarrow \hat{\beta}_0 = \overline{\mathbf{y}} - \hat{\beta}_1 \overline{\mathbf{x}}$$

3. Deriving OLS Estimators—continued

Plugging equation for $\hat{\beta}_0$ into (2.15):

$$\sum_{i=1}^{n} x_i \left[y_i - (\overline{y} - \hat{\beta}_1 \overline{x}) - \hat{\beta}_1 x_i \right] = 0$$
$$\Rightarrow \sum_{i=1}^{n} x_i (y_i - \overline{y}) = \beta_1 \sum_{i=1}^{n} x_i (x_i - \overline{x})$$

Hence, we can write $\hat{\beta}_1$ as:

$$\hat{\beta}_1 = \frac{\sum_i x_i(y_i - \overline{y})}{\sum_i x_i(x_i - \overline{x})} = \frac{\sum_i (x_i - \overline{x})(y_i - \overline{y})}{\sum_i (x_i - \overline{x})^2} = \frac{\sum_i (x_i - \overline{x})y_i}{\sum_i (x_i - \overline{x})^2}$$

4. Properties of OLS Estimators

- Regression line *must* go through $(\overline{x}, \overline{y})$
- $\sum_i \hat{u}_i = \sum_i x_i \hat{u}_i = 0$
- SST = SSE + SSR, where
 - SST = $\sum_{i} (y_i \overline{y})^2$
 - SSE = $\overline{\sum_{i}}(\hat{y}_{i} \overline{y})^{2}$ (sometimes called regression/model sum of squares)
 - SSR = $\sum_{i} \hat{u}_{i}^{2}$ (sometimes called error sum of squares)
- OLS is responsive to changes in units of measurement, but in sensible ways. How does it respond?

Log-level models:

$$\log(\gamma) = \beta_0 + \beta_1 x$$

Coefficients multiplied by 100 are approximately percentage changes in y

Log-level models:

$$\log(\gamma) = \beta_0 + \beta_1 x$$

Coefficients multiplied by 100 are *approximately* **percentage changes** in *y* **Log-log models**:

$$\log(\gamma) = \beta_0 + \beta_1 \log(x)$$

Coefficients are *exactly* **elasticities** of *y* with respect to *x* Can you prove these? Log-level models:

$$\log(\gamma) = \beta_0 + \beta_1 x$$

Coefficients multiplied by 100 are *approximately* **percentage changes** in *y* **Log-log models**:

$$\log(\gamma) = \beta_0 + \beta_1 \log(x)$$

Coefficients are *exactly* **elasticities** of *y* with respect to *x*

Can you prove these?

- Linear estimators: linear function of data
- Linear regression: linear function of parameters β

$$\hat{\beta}_1 = \frac{\sum_i (x_i - \overline{x}) \gamma_i}{\sum_i (x_i - \overline{x})^2} = \frac{\sum_i (x_i - \overline{x}) (\beta_0 + \beta_1 x_i + u_i)}{\sum_i (x_i - \overline{x})^2},$$

Hence, $\mathbb{E}[\hat{\beta}_1] = \beta_1$ (can show β_0 is unbiased easily from this).

EC 508: Midterm Review

$$\hat{\beta}_{1} = \frac{\sum_{i} (x_{i} - \overline{x}) y_{i}}{\sum_{i} (x_{i} - \overline{x})^{2}} = \frac{\sum_{i} (x_{i} - \overline{x}) (\beta_{0} + \beta_{1} x_{i} + u_{i})}{\sum_{i} (x_{i} - \overline{x})^{2}},$$
$$= \frac{\beta_{0} \sum_{i} (x_{i} - \overline{x}) + \beta_{1} \sum_{i} x_{i} (x_{i} - \overline{x}) + \sum_{i} u_{i} (x_{i} - \overline{x})}{\sum_{i} (x_{i} - \overline{x})^{2}},$$

Hence, $\mathbb{E}[\hat{\beta}_1] = \beta_1$ (can show β_0 is unbiased easily from this).

EC 508: Midterm Review

$$\hat{\beta}_{1} = \frac{\sum_{i} (x_{i} - \overline{x}) y_{i}}{\sum_{i} (x_{i} - \overline{x})^{2}} = \frac{\sum_{i} (x_{i} - \overline{x}) (\beta_{0} + \beta_{1} x_{i} + u_{i})}{\sum_{i} (x_{i} - \overline{x})^{2}},$$
$$= \frac{\beta_{0} \sum_{i} (x_{i} - \overline{x}) + \beta_{1} \sum_{i} x_{i} (x_{i} - \overline{x}) + \sum_{i} u_{i} (x_{i} - \overline{x})}{\sum_{i} (x_{i} - \overline{x})^{2}},$$
$$= \frac{0 + \beta_{1} \sum_{i} (x_{i} - \overline{x})^{2} + \sum_{i} u_{i} (x_{i} - \overline{x})}{\sum_{i} (x_{i} - \overline{x})^{2}},$$

Hence, $\mathbb{E}[\hat{\beta}_1] = \beta_1$ (can show β_0 is unbiased easily from this).

EC 508: Midterm Review

$$\hat{\beta}_{1} = \frac{\sum_{i} (x_{i} - \overline{x}) \gamma_{i}}{\sum_{i} (x_{i} - \overline{x})^{2}} = \frac{\sum_{i} (x_{i} - \overline{x}) (\beta_{0} + \beta_{1} x_{i} + u_{i})}{\sum_{i} (x_{i} - \overline{x})^{2}},$$

$$= \frac{\beta_{0} \sum_{i} (x_{i} - \overline{x}) + \beta_{1} \sum_{i} x_{i} (x_{i} - \overline{x}) + \sum_{i} u_{i} (x_{i} - \overline{x})}{\sum_{i} (x_{i} - \overline{x})^{2}},$$

$$= \frac{0 + \beta_{1} \sum_{i} (x_{i} - \overline{x})^{2} + \sum_{i} u_{i} (x_{i} - \overline{x})}{\sum_{i} (x_{i} - \overline{x})^{2}},$$

$$= \beta_{1} + \frac{\sum_{i} u_{i} (x_{i} - \overline{x})}{\sum_{i} (x_{i} - \overline{x})^{2}}$$

Hence, $\mathbb{E}[\hat{\beta}_1] = \beta_1$ (can show β_0 is unbiased easily from this).

- Choose a good formula for regression coefficient (partialled out, etc.)
- Plug in true linear model
- 3 Distribute summation
- 4 Simplify using properties of sums/residuals
- 5 Take expectation

$$\mathbb{V}[\hat{\beta}_1] = \mathbb{V}\left[\beta_1 + \frac{\sum_i u_i(x_i - \overline{x})}{\sum_i (x_i - \overline{x})^2}\right],$$

$$\begin{split} \mathbb{V}[\hat{\beta}_1] &= \mathbb{V}\left[\beta_1 + \frac{\sum_i u_i(x_i - \overline{x})}{\sum_i (x_i - \overline{x})^2}\right], \\ &= 0 + \mathbb{V}\left[\frac{\sum_i u_i(x_i - \overline{x})}{\sum_i (x_i - \overline{x})^2}\right], \end{split}$$

$$\begin{split} \mathbb{V}[\hat{\beta}_1] &= \mathbb{V}\left[\beta_1 + \frac{\sum_i u_i(x_i - \overline{x})}{\sum_i (x_i - \overline{x})^2}\right], \\ &= 0 + \mathbb{V}\left[\frac{\sum_i u_i(x_i - \overline{x})}{\sum_i (x_i - \overline{x})^2}\right], \\ &= \frac{\sum_i \mathbb{V}\left[u_i\right](x_i - \overline{x})^2}{\left(\sum_i (x_i - \overline{x})^2\right)^2}, \end{split}$$

 \mathbb{V}

$$\begin{split} [\hat{\beta}_1] &= \mathbb{V}\left[\beta_1 + \frac{\sum_i u_i(x_i - \overline{x})}{\sum_i (x_i - \overline{x})^2}\right], \\ &= 0 + \mathbb{V}\left[\frac{\sum_i u_i(x_i - \overline{x})}{\sum_i (x_i - \overline{x})^2}\right], \\ &= \frac{\sum_i \mathbb{V}\left[u_i\right] (x_i - \overline{x})^2}{\left(\sum_i (x_i - \overline{x})^2\right)^2}, \\ &= \frac{\sigma^2 \sum_i (x_i - \overline{x})^2}{\left(\sum_i (x_i - \overline{x})^2\right)^2} = \frac{\sigma^2}{\sum_i (x_i - \overline{x})^2} \end{split}$$

EC 508: Midterm Review

An unbiased estimator of $\mathbb{V}[u]$ would be $\frac{1}{n}\sum_{i}u_{i}^{2}$, but these are unobserved. **Instead**:

- Use residuals instead of sample errors: $\hat{\sigma}^2 = \frac{1}{n} \sum_i \hat{u}_i^2$ (this is biased)
- 2 Correct with a degree of freedom adjustment: $s^2 = \frac{1}{n-2} \sum_i \hat{u}_i^2$

Standard Errors:

- Standard error of the regression: $s=\sqrt{s^2}$ (RMSE)
 - Estimates standard deviation of unobservables affecting y or sd(y|x)
- Standard error of coefficients: $se(\hat{\beta}_1) = \frac{s}{\sqrt{SST_x}}$ (comes from square root of previous slide)
 - What do we learn from standard errors?

What if we ignore the constant term?

$$\tilde{\beta}_1 = \frac{\sum_i x_i y_i}{\sum_i x_i^2}$$

- Biased if $\beta_0 \neq 0$
- May reduce variance of $\tilde{\beta}_1$
- R² may be negative here—What would this mean?

Chapter 3: Multiple Regression Analysis

EC 508: Midterm Review

12. & 13. MLR and its Interpretation

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + u_i$$

- How do you interpret β_i ?
- Estimators derived in the same way (easier with matrix algebra)
- Key assumption: $\mathbb{E}[u|x_1,...,x_k] = 0$
 - Other factors affecting y are not related (on average) to x's

12. & 13. MLR and its Interpretation

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + u_i$$

- How do you interpret β_i ?
- Estimators derived in the same way (easier with matrix algebra)
- Key assumption: $\mathbb{E}[u|x_1,...,x_k] = 0$
 - Other factors affecting y are not related (on average) to x's

Partialled out formula for β_1 :

$$\hat{\beta}_{1} = \frac{\sum_{i} \hat{r}_{i1} Y_{i}}{\sum_{i} \hat{r}_{i1}^{2}},$$
(3.22)

where \hat{r}_{i1} are the residuals from regressing x_1 on all other x's

EC 508: Midterm Review

Can define SST, SSE, and SSR in the same way. Then

$$R^2 = \frac{\text{SSE}}{\text{SST}} = 1 - \frac{\text{SSR}}{\text{SST}}$$

What happens to R^2 when you add variables to a regression?

Can define SST, SSE, and SSR in the same way. Then

$$R^2 = \frac{\text{SSE}}{\text{SST}} = 1 - \frac{\text{SSR}}{\text{SST}}$$

What happens to R^2 when you add variables to a regression?

- How does this affect the interpretation of R^2 in multiple regression?
- Should you judge a regression based on its R^2 ?

$$\hat{\beta}_{1} = \frac{\sum_{i} \hat{r}_{i1} (\beta_{0} + \beta_{1} x_{i1} + \dots + \beta_{k} x_{ik} + u_{i})}{\sum_{i} \hat{r}_{i1}^{2}},$$

$$\hat{\beta}_{1} = \frac{\sum_{i} \hat{r}_{i1} (\beta_{0} + \beta_{1} x_{i1} + \dots + \beta_{k} x_{ik} + u_{i})}{\sum_{i} \hat{r}_{i1}^{2}}, \\ = \frac{\beta_{0} \sum_{i} \hat{r}_{i1} + \beta_{1} \sum_{i} \hat{r}_{i1} x_{i1} + \dots + \beta_{k} \sum_{i} \hat{r}_{i1} x_{ik} + \sum_{i} \hat{r}_{i1} u_{i}}{\sum_{i} \hat{r}_{i1}^{2}},$$

$$\hat{\beta}_{1} = \frac{\sum_{i} \hat{r}_{i1} (\beta_{0} + \beta_{1} x_{i1} + \dots + \beta_{k} x_{ik} + u_{i})}{\sum_{i} \hat{r}_{i1}^{2}}, \\ = \frac{\beta_{0} \sum_{i} \hat{r}_{i1} + \beta_{1} \sum_{i} \hat{r}_{i1} x_{i1} + \dots + \beta_{k} \sum_{i} \hat{r}_{i1} x_{ik} + \sum_{i} \hat{r}_{i1} u_{i}}{\sum_{i} \hat{r}_{i1}^{2}}, \\ = \frac{0 + \beta_{1} \sum_{i} \hat{r}_{i1}^{2} + 0 + \sum_{i} \hat{r}_{i1} u_{i}}{\sum_{i} \hat{r}_{i1}^{2}},$$

$$\begin{split} \hat{\beta}_{1} &= \frac{\sum_{i} \hat{r}_{i1} (\beta_{0} + \beta_{1} x_{i1} + \ldots + \beta_{k} x_{ik} + u_{i})}{\sum_{i} \hat{r}_{i1}^{2}}, \\ &= \frac{\beta_{0} \sum_{i} \hat{r}_{i1} + \beta_{1} \sum_{i} \hat{r}_{i1} x_{i1} + \ldots + \beta_{k} \sum_{i} \hat{r}_{i1} x_{ik} + \sum_{i} \hat{r}_{i1} u_{i}}{\sum_{i} \hat{r}_{i1}^{2}}, \\ &= \frac{0 + \beta_{1} \sum_{i} \hat{r}_{i1}^{2} + 0 + \sum_{i} \hat{r}_{i1} u_{i}}{\sum_{i} \hat{r}_{i1}^{2}}, \\ &= \beta_{1} + \frac{\sum_{i} \hat{r}_{i1} u_{i}}{\sum_{i} \hat{r}_{i1}^{2}}, \end{split}$$

EC 508: Midterm Review

$$\begin{split} \hat{\beta}_{1} &= \frac{\sum_{i} \hat{r}_{i1} (\beta_{0} + \beta_{1} x_{i1} + ... + \beta_{k} x_{ik} + u_{i})}{\sum_{i} \hat{r}_{i1}^{2}}, \\ &= \frac{\beta_{0} \sum_{i} \hat{r}_{i1} + \beta_{1} \sum_{i} \hat{r}_{i1} x_{i1} + ... + \beta_{k} \sum_{i} \hat{r}_{i1} x_{ik} + \sum_{i} \hat{r}_{i1} u_{i}}{\sum_{i} \hat{r}_{i1}^{2}}, \\ &= \frac{0 + \beta_{1} \sum_{i} \hat{r}_{i1}^{2} + 0 + \sum_{i} \hat{r}_{i1} u_{i}}{\sum_{i} \hat{r}_{i1}^{2}}, \\ &= \beta_{1} + \frac{\sum_{i} \hat{r}_{i1} u_{i}}{\sum_{i} \hat{r}_{i1}^{2}}, \\ \Rightarrow \mathbb{E}[\hat{\beta}_{1}] = \beta_{1} \end{split}$$

EC 508: Midterm Review

Gauss-Markov Assumptions:

- Conditional Mean Assumption: $\mathbb{E}[u|x_1,...,x_k] = 0$
- Linear in Parameters: The true model is $y = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k + u$
- Random Sampling: Need a representative sample
- No Linear Relationships in Data: (no perfect multicolinearity)
- Homoskedasticity: $\mathbb{V}[u] = \sigma^2$

If a variable x_i is **omitted** from the regression:

$$\hat{\beta}_{1} = \frac{\sum_{i} \hat{r}_{i1} (\beta_{0} + \beta_{1} x_{i1} + \dots + \beta_{k} x_{ik} + u_{i})}{\sum_{i} \hat{r}_{i1}^{2}},$$

In general, $\tilde{\beta}_i = \hat{\beta}_i + \hat{\beta}_2 \tilde{\delta}$

If a variable x_j is **omitted** from the regression:

$$\hat{\beta}_{1} = \frac{\sum_{i} \hat{r}_{i1} (\beta_{0} + \beta_{1} x_{i1} + \dots + \beta_{k} x_{ik} + u_{i})}{\sum_{i} \hat{r}_{i1}^{2}}, \\ = \frac{0 + \beta_{1} \sum_{i} \hat{r}_{i1}^{2} + \beta_{j} \sum_{i} \hat{r}_{i1} x_{ij} + \sum_{i} \hat{r}_{i1} u_{i}}{\sum_{i} \hat{r}_{i1}^{2}},$$

In general,
$$\tilde{\beta}_i = \hat{\beta}_i + \hat{\beta}_2 \tilde{\delta}$$

If a variable x_j is **omitted** from the regression:

$$\hat{\beta}_{1} = \frac{\sum_{i} \hat{r}_{i1} (\beta_{0} + \beta_{1} x_{i1} + \dots + \beta_{k} x_{ik} + u_{i})}{\sum_{i} \hat{r}_{i1}^{2}}, \\ = \frac{0 + \beta_{1} \sum_{i} \hat{r}_{i1}^{2} + \beta_{j} \sum_{i} \hat{r}_{i1} x_{ij} + \sum_{i} \hat{r}_{i1} u_{i}}{\sum_{i} \hat{r}_{i1}^{2}}, \\ = \beta_{1} + \frac{\beta_{j} \sum_{i} \hat{r}_{i1} x_{ij} + \sum_{i} \hat{r}_{i1} u_{i}}{\sum_{i} \hat{r}_{i1}^{2}},$$

In general, $\tilde{\beta}_i = \hat{\beta}_i + \hat{\beta}_2 \tilde{\delta}$

If a variable x_j is **omitted** from the regression:

$$\hat{\beta}_{1} = \frac{\sum_{i} \hat{r}_{i1} (\beta_{0} + \beta_{1} x_{i1} + \dots + \beta_{k} x_{ik} + u_{i})}{\sum_{i} \hat{r}_{11}^{2}},$$

$$= \frac{0 + \beta_{1} \sum_{i} \hat{r}_{i1}^{2} + \beta_{j} \sum_{i} \hat{r}_{i1} x_{ij} + \sum_{i} \hat{r}_{i1} u_{i}}{\sum_{i} \hat{r}_{11}^{2}},$$

$$= \beta_{1} + \frac{\beta_{j} \sum_{i} \hat{r}_{i1} x_{ij} + \sum_{i} \hat{r}_{i1} u_{i}}{\sum_{i} \hat{r}_{i1}^{2}},$$

$$\Rightarrow \mathbb{E}[\hat{\beta}_{1}] = \beta_{1} + \beta_{j} \frac{\sum_{i} \hat{r}_{i1} x_{ij}}{\sum_{i} \hat{r}_{11}^{2}}$$

In general, $\tilde{\beta}_i = \hat{\beta}_i + \hat{\beta}_2 \tilde{\delta}$

18. Variance of β_i in MLR

$$\mathbb{V}[\hat{\beta}_j] = \frac{\sigma^2}{SST_j(1-R_j^2)},$$

where $SST_j = \sum_i (x_{ij} - \overline{x}_j)^2$ and R_j^2 is from the regression of x_j on all other x's If you add more regressors, how does this variance change?

18. Variance of β_i in MLR

$$\mathbb{V}[\hat{\beta}_j] = \frac{\sigma^2}{SST_j(1-R_j^2)},$$

where $SST_j = \sum_i (x_{ij} - \overline{x}_j)^2$ and R_j^2 is from the regression of x_j on all other x's

If you add more regressors, how does this variance change?

- Variance of the regression, σ^2 should go down
- SST_j won't change (sidenote: what do we want this to look like?)
- R_i^2 will weakly increase
- Hence both numerator and denominator decrease, so variance may change in either direction

Formally, $R_j^2 = 1$ violates assumptions. Informally, $R_j^2 \rightarrow 1$ causes what bad things?.

- Perfect multicolinearity only exists with algebraic relationships
- High colinearity can always be solved by obtaining more data ("micronumerosity")
- Some stats exist to "diagnose", but are almost always misused
- Conclusion: don't use these in your own analysis, only for the test

Variance Inflation Factor:

$$\forall \mathsf{IF}_j = \frac{1}{1 - R_j^2} = \mathbb{V}[\hat{\beta}_1] \frac{SST_j}{\sigma^2}$$

When does the VIF matter?

- II If we need x_i to infer causality of x_i on y, have to deal with colinearity
- 2 If parameter of interest is β_i , then the VIF's of β_i 's don't matter
- Arbitrary VIF cutoffs don't help because they are highly dependent on sample size and sample variation

Conclusion: VIF is rarely used in practice (for the test, VIF > 10 is good rule)

An unbiased estimator of $\mathbb{V}[u]$ would be $\frac{1}{n}\sum_{i}u_{i}^{2}$, but these are unobserved. **Instead**:

- Use residuals instead of sample errors: $\hat{\sigma}^2 = \frac{1}{n} \sum_i \hat{u}_i^2$ (this is biased)
- 2 Correct with a degree of freedom adjustment: $s^2 = \frac{1}{n-k-1} \sum_i \hat{u}_i^2$

An unbiased estimator of $\mathbb{V}[u]$ would be $\frac{1}{n}\sum_{i}u_{i}^{2}$, but these are unobserved. **Instead**:

II Use residuals instead of sample errors: $\hat{\sigma}^2 = \frac{1}{n} \sum_i \hat{u}_i^2$ (this is biased)

2 Correct with a degree of freedom adjustment: $s^2 = \frac{1}{n-k-1} \sum_i \hat{u}_i^2$ Standard Errors:

- Standard error of the regression: $s = \sqrt{s^2}$ (RMSE)
 - Can increase or decrease when adding regressors based on how SSR changes relative to degrees of freedom
- Standard error of coefficients: $se(\hat{\beta}_1) = \frac{s}{\sqrt{SST_j(1-R_j^2)}}$
 - Standard errors are inconsistent under heteroskedasticity

OLS is the best linear unbiased estimator (BLUE):

- What is a linear estimator?
- Unbiased: $\mathbb{E}[\tilde{\beta}_j] = \beta_j$
- Best: having the smallest asymptotic variance
 - Why is this desirable?

Chapter 4: Inference for Linear Regression

23. Sampling distributions of OLS

Normality assumption: $u \sim \mathcal{N}(0, \sigma^2)$

- Simplifying assumption—not needed in practice with large N
- Why make it?

23. Sampling distributions of OLS

Normality assumption: $u \sim \mathcal{N}(0, \sigma^2)$

- Simplifying assumption—not needed in practice with large N
- Why make it?

Under the normality assumption:

$$\hat{\beta}_{j} \sim \mathcal{N}(\beta_{j}, \mathbb{V}[\beta_{j}])$$

 $\Rightarrow \left(\frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{\mathbb{V}[\beta_{j}]}}\right) \sim \mathcal{N}(0, 1)$

- Any linear combination of β 's is normally distributed
- Any subset of β 's is jointly normally distributed

If we use estimate of σ^2 (swapping sd for standard error):

$$\left(rac{\hat{eta}_j - eta_j}{\operatorname{se}(\hat{eta}_j)}
ight) \sim t_{n-k-1}$$

Hence we can test hypotheses of the form \mathcal{H}_0 : $\beta_j = c$ against \mathcal{H}_1 : $\beta_j \neq c$ using the following:

- 1 Specify null and alternative hypotheses (1- or 2-sided?) and lpha
- 2 Calculate test statistic above
- 3 Find *p*-value from computer or comparable *t*-stat from table
- Interpret result (do we reject? What can we conclude about β_i ?)

TABLE G.2	Critical Values of	the <i>t</i> Distribution			
			Significance Leve	I	
1-Tailed:	.10	.05	.025	.01	.005
2-Tailed:	.20	.10	.05	.02	.01
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355

Dual version of hypothesis testing:

$$\mathsf{Cl}(\hat{eta}_j) = \hat{eta}_j \pm oldsymbol{c}_lpha st \mathsf{Se}(\hat{eta}_j)$$

- c_α comes from table in previous slide
- If confidence interval overlaps with c, cannot reject \mathcal{H}_0 at specified α
- How do we interpret a confidence interval?

Can we expand tests to \mathcal{H}_0 : $\theta = 0$, where θ is a linear combination of β 's?

- Specify \mathcal{H}_0 , \mathcal{H}_1 , and α (WLOG can set $\theta = 0$)
- 2 Estimate $se(\theta)$ with transformed regression
 - **Rewrite** \mathcal{H}_0 in terms of one β
 - 2 Plug in to original regression equation and simplify
 - 3 Estimate transformed model to get correct $se(\theta)$
- 3 Evaluate test stat: $\hat{\theta}/\text{se}(\hat{\theta})$
- I Find corresponding *p*-value (or *t*-stat from table)
- 5 Interpret result (do we reject? How do we unpack θ ?)

27. & 28. Testing multiple linear restrictions

Now, we want to test **multiple** parameters at once (not just linear combo) e.x.: $\mathcal{H}_0: \beta_3 = \beta_4 = \beta_5 = 0$

- Specify \mathcal{H}_0 , α , and \mathcal{H}_1 ($\beta_i \neq 0$ for at least one *i*)
- 2 Estimate restricted and unrestricted models
- 3 Compute *F*-statistic:

$$F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)} = \frac{(R_{ur}^2 - R_r^2)/q}{(1-R_{ur}^2)/(n-k-1)},$$

where q is the number of restrictions

- ▶ Note: $F \ge 0$ always—something's off if you get a negative stat
- Look up F stat using table; df: (q, n k 1)
- 5 Interpret accordingly (careful of what rejection implies)

Why are we testing different things?

- Square of t stat is the F stat—hence, the two approaches are equivalent in single tests
- *t*-stat allows for one-sided tests directly (more flexible)
- Plus they're less work to calculate
- One caveat: it is possible to have $\beta_1 \neq 0$ and $\beta_1 = ... = \beta_k = 0$ if you throw in enough garbage
- Testing should be well-motivated

30. F-stats for overall regression

If the model includes k regressors, we are testing

 $\mathcal{H}_0: \beta_1 = \dots = \beta_k = 0$ $\mathcal{H}_1: \beta_i \neq 0 \text{ for at least one } i$

- Estimate unrestricted model
 - Restricted model is just \overline{y} , which has $R^2 = 0$
- 3 Calculate *F* test stat:

$$F = \frac{R^2/k}{(1 - R^2)/(n - k - 1)}$$

Compare with *F*-stat from table

5 Interpret

31. Testing general linear restrictions

- Comes down to correct estimation of restricted model
- Same procedure as before

