What's in a Bill? A Model of Imperfect Moral Hazard in Healthcare

Alex HoaglandDavid AndersonEd ZhuUniversity of TorontoDuke UniversityBoston University

November 17, 2022

Imperfect information (theoretically) justifies patient cost-sharing

• Elastic demand for health care requires patients to face real prices

Motivation: Why Should Patients Share Costs?

Imperfect information (theoretically) justifies patient cost-sharing

• Elastic demand for health care requires patients to face real prices

Moral Hazard in health denotes *patient responsiveness* to price changes:

- Behavioral changes when meeting a deductible

Imperfect information (theoretically) justifies patient cost-sharing

• Elastic demand for health care requires patients to face real prices

Moral Hazard in health denotes patient responsiveness to price changes:

- Behavioral changes when meeting a deductible

But models of moral hazard assume that prices are known immediately

- Payers take between ~4 weeks to issue payment decisions
- Providers don't send bills until after that!

Variation in Prices

Imperfect information (theoretically) justifies patient cost-sharing

• Elastic demand for health care requires patients to face real prices

Moral Hazard in health denotes patient responsiveness to price changes:

- Behavioral changes when meeting a deductible

But models of moral hazard assume that prices are known immediately

- Payers take between ~4 weeks to issue payment decisions
- Providers don't send bills until after that!

Variation in Prices

Me: has a doctorate (almost!) in public health

Also me: cannot figure out my own health insurance, whether I've met my deductible, and how to be reimbursed for out of network services.

11:55 AM · Oct 7, 2022 · Twitter Web App

How responsive are consumers before prices are known?

...

How do Large Health Expenses Affect Household Spending?

Scenario 1: Payer information (EOB) arrives in same week as service

Imperfect Moral Hazard

Scenario 2: EOB arrives a month after service

Imperfect Moral Hazard

Setting & Research Questions

Setting: Household responses to "Shoppable Health Services"

- Examples: Biopsies/colonoscopies, arthroscopy, cataract removals
- Average [median] OOP costs around \$650 [\$200]
- Examine spillover responses in future health consumption

Setting: Household responses to "Shoppable Health Services"

• Examples: Biopsies/colonoscopies, arthroscopy, cataract removals

Our Questions:

- 1 How responsive are consumers before prices are known?
 - Does information about the true cost of service change responses?
- 2 What information is contained in a bill?
 - Which households respond to the bill?
 - Is there evidence of response to price information?
 - What services are affected?

3 What information do patients internalize prior to receiving a bill?

- Model of imperfect moral hazard with delayed learning
- How do mis-perceptions of OOP spending influence over-consumption of care?

1 Household consumption $\uparrow\uparrow$ following service but \downarrow when bill arrives

Estimated bill effect is ~20% of total spending increase

- 1 Household consumption $\uparrow\uparrow$ following service but \downarrow when bill arrives
 - Estimated bill effect is ~20% of total spending increase
- 2 Evidence that patients respond to **price information** in bill
 - Patients with lower initial spending have larger "swings" in spending
 - Bill effects are strongest for bills that almost met deductible
 - Bill effects are largest for highly elastic services (preventable hospitalizations, E&M, labs)

- 1 Household consumption $\uparrow\uparrow$ following service but \downarrow when bill arrives
 - Estimated bill effect is ~20% of total spending increase
- 2 Evidence that patients respond to **price information** in bill
 - Patients with lower initial spending have larger "swings" in spending
 - Bill effects are strongest for bills that almost met deductible
 - Bill effects are largest for highly elastic services (preventable hospitalizations, E&M, labs)
- **3** Households **over-estimate** OOP spending before bills:
 - Model suggests households inflate spending by \approx 10%
 - ▶ 1 in 10 over-consume care: \$842.80 [\$480.59] per household member
 - Evidence of learning but with very misinformed priors

OUTLINE

- Setting & Data: CMS Shoppable Services
- 2 Empirical Results: Effect of Bills on Spillover Responses
- **3** Heterogeneity: Evidence of Partial Price Information
- 4 Model: Imperfect Moral Hazard in Health Care
- 5 Counterfactual Simulations: Policy Relevance & Conclusions

SETTING & DATA

Setting: Shoppable Health Services

- Household responses to planned + nontrivial health expenditures
- 30 CMS "shoppable services": non-urgent scheduled services

Туре	Code	Service Description
СРТ	19120	Removal of 1 or more breast growth, open procedure
CPT	29881	Removal of one knee cartilage using an endoscope
CPT	42820	Removal of tonsils and adenoid glands (patient younger than age 12)
CPT	43239	Biopsy of the esophagus, stomach, and/or upper small bowel
CPT	47562	Removal of gallbladder using an endoscope
CPT	49505	Repair of groin hernia (patient age 5 years or older)
CPT	55700	Biopsy of prostate gland
CPT	55866	Surgical removal of prostate and surrounding lymph nodes
CPT	59400	Routine obstetric care for vaginal delivery
CPT	59510	Routine obstetric care for cesarean delivery
CPT	59610	Routine obstetric care for vaginal delivery after prior cesarean delivery

Data: Truven Commercial Claims and Encounters Marketscan, 2006–2018

- Detailed claims for households in private group plans
- Large sample: 8 firms, N = 386,240 families
- Data provides deep dive into utilization and spending

Data: Truven Commercial Claims and Encounters Marketscan, 2006–2018

- Detailed claims for households in private group plans
- Large sample: 8 firms, N = 386,240 families
- Data provides deep dive into utilization and spending

Exogenous Variation: Waiting times for bills

- Comparison group: households who haven't had services yet (Fadlon & Nielson, 2019)
- Wait times for bills are exogenous at the household level
- Divides response into 2 periods: "interim" and post-bill

Summary Statistics

Waiting Times for Bills

EMPIRICAL EVIDENCE

We use a **triple-differences** framework to identify the **causal effect of a bill's arrival** on household spending choices:

 $\mathbb{E}[\mathsf{spend}_{ity}] = \exp\left\{\beta_1 \mathbb{1}(\mathsf{post_service}_{ity}) + \beta_2 \mathbb{1}(\mathsf{post_bill}_{ity}) + \mathsf{FEs}\right\}$

We use a **triple-differences** framework to identify the **causal effect of a bill's arrival** on household spending choices:

 $\mathbb{E}[\mathsf{spend}_{ity}] = \exp\left\{\beta_1 \mathbb{1}(\mathsf{post_service}_{ity}) + \beta_2 \mathbb{1}(\mathsf{post_bill}_{ity}) + \mathsf{FEs}\right\}$

- Poisson regression: multiplicative effects on spending
 - For skewed (nonnegative) spending data + weeks with o spending
 - Assumption for consistency: conditional mean E[spend_{ity}] is correctly specified (same as OLS)
- Triple-differences separates periods by plan paid date
- Individual, week-of-year, year, and MD fixed-effects
- β_2 is causal to the extent that bill timing is random

	Main M	Aodels	Alternative Specifications				
Post Service	0.402***	0.464***	0.597***	0.472***	0.486***		
	(0.0022)	(0.0032)	(0.0032)	(0.0032)	(0.0033)		
Post Bill		-0.077***	-0.080***	-0.096***	-0.076***		
		(0.0030)	(0.0030)	(0.0030)	(0.0031)		
spend _{it}	\$120.49	\$120.49	\$120.49	\$120.49	\$120.49		
Household FEs	Х	Х	Х	Х	Х		
Year FEs	Х	Х		Х	Х		
Week of Year FEs	Х	Х			Х		
Provider FEs	Х	Х					
Observations	61,860,735	61,860,735	61,860,735	61,860,735	61,860,735		

- Bill effects are consistently estimated
- Constitutes ~ 1/5 of total household response!
- Robust to placebo wait times

WHO LEARNS WHAT FROM BILLS?

Bills may drive spending decisions due to different types of information:

- Pricing: households learn about service (OOP) prices
- Coverage: households learn that procedures are/aren't covered
- Billing Practices: billing mismatches between patients and providers

Bills may drive spending decisions due to different types of information:

- Pricing: households learn about service (OOP) prices
- Coverage: households learn that procedures are/aren't covered
- Billing Practices: billing mismatches between patients and providers

Understanding mechanisms of bills

- What types of households respond to bills?
- 2 What types of expenditures are particularly salient?
- 3 What types of services are affected?

Note: from here on, only use data through 2013 due to plan identifying information.

Who Responds? Households with Lower Pre-Event Spending

- Responses are largest for low-spending households
- Responses converge to o for high-spending households

Imperfect Moral Hazard

Expenses "Landing" You Close to Deductible Are Most Salient

Imperfect Moral Hazard

Alex Hoagland (University of Toronto) 14

Model Primitives

Individuals choose weekly health spending m_{it}^* in response to:

- Individual health shock λ_{it}
- Individual moral hazard parameter ω_i
- Household spending $c_{ij} (\sum_{i \in I} m_{it})$

Model Primitives

Individuals choose weekly health spending m_{it}^* in response to:

- Individual health shock λ_{it}
- Individual moral hazard parameter ω_i
- Household spending c_{ij} $(\sum_{i \in I} m_{it})$

What about delays in medical bills? (When M_{It} isn't known)

1 Spending is **estimated** as θ before bill arrives:

Each spending event is a signal that takes time to be processed

Model Primitives

Individuals choose weekly health spending m_{it}^* in response to:

- Individual health shock λ_{it}
- Individual moral hazard parameter ω_i
- Household spending $c_{ij} (\sum_{i \in I} m_{it})$

What about delays in medical bills? (When M_{It} isn't known)

1 Spending is **estimated** as θ before bill arrives:

Each spending event is a signal that takes time to be processed
2 Main question: how do households perceive M_{It} before signals?

Imperfect Moral Hazard

Suppose that: each signal $s_i(m_{is}|x_{is}) = \beta c_{ij}(m_{is})$

In this case, θ can be simplified:

$$\theta = \sum_{i \in I} \sum_{s=0}^{t} (1 - D_{is})\beta c_{ij}(m_{is}) + D_{is}c_{ij}(m_{is}),$$

• where $D_{is} = 1$ if bill for that week has arrived

Suppose that: each signal $s_i(m_{is}|x_{is}) = \beta c_{ij}(m_{is})$

In this case, θ can be simplified:

$$\theta = \sum_{i \in I} \sum_{s=0}^{t} (1 - D_{is})\beta c_{ij}(m_{is}) + D_{is}c_{ij}(m_{is}),$$

- where $D_{is} = 1$ if bill for that week has arrived
- Based on θ , consumers have marginal cost \hat{c}_{it} , where $\hat{c} = 1$ if deductible hasn't been met and $\hat{c} < 1$ otherwise
- Leads to over-consumption if deductible is misperceived

Suppose that: each signal $s_i(m_{is}|x_{is}) = \beta c_{ij}(m_{is})$

In this case, θ can be simplified:

$$\theta = \sum_{i \in I} \sum_{s=0}^{t} (1 - D_{is})\beta c_{ij}(m_{is}) + D_{is}c_{ij}(m_{is}),$$

- where D_{is} = 1 if bill for that week has arrived
- Based on θ, consumers have marginal cost ĉ_{it}, where ĉ = 1 if deductible hasn't been met and ĉ < 1 otherwise
- Leads to over-consumption if deductible is misperceived

What value of β matches observed data?

Optimal spending choice in each period is given by:

$$m_{it}^* = \max\{0, \lambda_{it} + \omega_i(1 - \hat{c}_{it})\}$$

- Parameterization of $(u(\cdot), \lambda, \omega)$ allows identification of β
 - ω_i : calibrated from Einav et al. (demographics + risk scores)
 - \triangleright λ_{it} : (Log-normal) distributions matched to out-of-sample individuals

Optimal spending choice in each period is given by:

$$m_{it}^* = \max\{0, \lambda_{it} + \omega_i(1 - \hat{c}_{it})\}$$

- Parameterization of $(u(\cdot), \lambda, \omega)$ allows identification of β
 - ω_i : calibrated from Einav et al. (demographics + risk scores)
 - \triangleright λ_{it} : (Log-normal) distributions matched to out-of-sample individuals
- β comes from variation in bill times (exogenous to household)

Optimal spending choice in each period is given by:

$$m_{it}^* = \max\{0, \lambda_{it} + \omega_i(1 - \hat{c}_{it})\}$$

- Parameterization of $(u(\cdot), \lambda, \omega)$ allows identification of β
 - $\triangleright \omega_i$: calibrated from Einav et al. (demographics + risk scores)
 - \triangleright λ_{it} : (Log-normal) distributions matched to out-of-sample individuals
- β comes from variation in bill times (exogenous to household)

We can also incorporate simple **Bayesian learning** about β :

- 1 Households have prior beliefs $\beta_{i0} \sim \mathcal{N}(\mu_0, \sigma_0^2)$
- 2 Each medical encounter is a signal $s_{it} \sim \mathcal{N}(1, s^2)$
- **3** Each parameter in (μ_0, σ_0^2, s^2) identified by within- and across-household variation in spending + bill times

Model Results: No Learning

- Households spend as though $\beta \approx 1.1$
- Leads to over-consumption for 10% of households of \$842.80

Imperfect Moral Hazard

Model Results: Learning

- Estimated parameters are $(\mu_0, \sigma_0^2, s^2) \approx (1.8, .026, .001)$
- Medical encounters are informative for those who have enough

Imperfect Moral Hazard

Alex Hoagland (University of Toronto) 19

- Incorrect info ⇒ over-consumption across periods & people
- Tradeoffs in shortening deductibles: ↑ instances of ↓ uncertainty

DISCUSSION & CONCLUSIONS

Our analysis highlights:

- 1 Households are under-informed about prices before a bill arrives
- 2 Bills cause households to "reign in" spending responses
- 3 Collective evidence suggests households over-inflate OOP spending
- 4 Leads to over-consumption of care + potential for cascades of care

Our analysis highlights:

- 1 Households are under-informed about prices before a bill arrives
- 2 Bills cause households to "reign in" spending responses
- 3 Collective evidence suggests households over-inflate OOP spending
- 4 Leads to over-consumption of care + potential for cascades of care

Future work:

- Counterfactual simulations of alternative plan designs
- Actual data on physician billing practices / patient interactions
- Equity concerns of under-information
- impact of real-times claim adjudication on consumer spending responses

WHAT'S IN A BILL? A MODEL OF IMPERFECT MORAL HAZARD IN HEALTHCARE

> Alex Hoagland (U Toronto) David Anderson (Duke) Ed Zhou (Boston U)

Additional Comments? alexander.hoagland@utoronto.ca Website: alex-hoagland.github.io

- Einav, Finkelstein, Ryan, Schrimpf, and Cullen (2013). Selection on moral hazard in health insurance. *American Economic Review*.
- Fadlon and Nielson (2019). Family health behaviors. American Economic Review.

Motivation: Variation in Service Prices

Back

	Full Sample	Plan-Identified Sample
Total spending	\$4,764 [\$975] (0.002)	\$4,406 [\$887] (0.002)
% with o spending	0.17 (0.000)	0.20 (0.000)
OOP spending	\$650 [\$198] (0.000)	\$562 [\$167] (0.000)
Deductible > 0	_	\$1,040.24 (0.001)
% with o deductible	_	0.26 (0.000)
% w/ shoppable services	0.06 (0.000)	0.06 (0.000)
Total cost	\$5,572 [\$3,721] (0.011)	\$5,645 [\$3,814] (0.015)
OOP	\$691 [\$388] (0.002)	\$574 [\$290] (0.002)
Years	2006–2018	2006-2013
N _{families}	368,237	367,445
Nindividuals	1,357,392	1,311,554

Imperfect Moral Hazard

Substantial (quasi-random) variation in waiting times for bills

Back

	Average Spending		Difference			Sample Size	
Procedure	$d \leq 30$	d > 30	Unadjusted	Adjusted	<i>p</i> -value	$d \leq 30$	d>30
Removal, prostate	\$21,834	\$25,362	\$3,528	\$1,260	0.41	917	403
Removal, knee cartilage	\$7,619	\$8,021	\$402	\$697	0.00	46,937	$15,\!606$
Removal, breast growth	\$4,887	\$5,173	\$286	\$674	0.00	$10,\!550$	3,916
Injection, anesthetic	\$3,258	\$3,537	\$279	\$484	0.00	49,604	$16,\!667$
Biopsy, esophagus/stomach	\$3,317	\$3,238	-\$79	\$406	0.00	245,411	$65,\!603$
Removal, tonsils (age < 12)	\$4,578	\$4,871	\$293	\$342	0.00	21,503	4,962
Shaving, shoulder bone	\$12,262	\$12,040	-\$222	\$233	0.07	27,952	11,410
Biopsy, prostate	\$2,653	\$2,377	-\$276	\$124	0.01	23,172	6397
Removal, gallbladder	\$9,217	\$9,794	\$577	\$96	0.38	36,756	13,252
Hernia repair	\$6,753	\$6,724	-\$28	\$28	0.83	14,314	5,215
Removal, cataract (no insertion)	\$1,408	\$1,198	-\$210	-\$179	0.05	11,776	2,388
Vaginal delivery	\$7,789	\$7,927	\$139	-\$344	0.00	82,968	36,068
Removal, cataract (lens insertion)	\$6,114	\$5,958	-\$156	-\$346	0.00	43,129	9,266
Vaginal delivery, prior C-section	\$8,429	\$8,634	\$205	-\$912	0.01	1298	503

We conduct placebo tests to assess if results are driven by timing of household responses:

Regression Results by Deductible Fraction

% of Deductible Met at Time of Service

Counterfactual Model Results: No Learning

Counterfactual Model Results: Learning

