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Abstract

As fields become more specialized, ineffective communication between innovators and

practitioners can slow the diffusion of ideas. This paper examines the impact of con-

tinuing education in eating disorder treatment, comparing the take-up of (i) tangible

innovations (psychopharmacology) and (ii) intangible innovations (psychotherapy) fol-

lowing professional conferences. I use a novel extension of an estimator proposed by

Calvi, Lewbel, and Tommasi (2019) in an event study setting to overcome data lim-

itations. I find very small responses among therapists for both kinds of innovations,

suggesting that continuing medical education is not an important channel for treatment

diffusion. Therapists respond more to education in pharmacology than psychotherapy,

being about 3 percentage points more likely to write new prescriptions following a

conference. This increase occurs mainly for adolescent patients being treated by non-

psychiatrist prescribers. Response to purely psychotherapeutic innovations is limited

to more academic-oriented specialists such as psychologists.
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1 Introduction

Innovations rest at the heart of many endeavors, and their development, diffusion, and de-

ployment pose critical questions across the spectrum of economic investigation. Generally,

innovations studied in economic models are all treated alike, either as random shocks chang-

ing a technological process, or a simple event disrupting an equilibrium. In these senses,

innovations can be evaluated as though they were policy changes, utilizing many of the

simple causal inference tools popular in the field.

However, a more in-depth study of how innovations are discovered and proceed to sway

equilibria requires an explicit differentiation of innovation types. Some innovations, for

example, are mechanical, such as a software update to a technology that can improve per-

formance for a one-time fixed cost. Others require a more hands-on approach, such as those

that require learning-by-doing (Arrow, 1962) or similar methods. Innovations—like many

other economic objects—are heterogeneous, and can take on a continuum of values in a

potentially high-dimensional characteristic space.

One question that has yet to be asked is how these characteristics affect each innovation’s

success. It is reasonable that innovations with higher fixed costs, more variation in outcome,

or other frictions may diffuse more slowly than innovations with a more straightforward

one-time updating cost. Hence, especially as a landscape of innovation tends to the more

intangible and artisanal, the spread of new ideas in a field may slow, resulting in gaps

between the cutting edge of research and the use of these techniques in practice. Such a

gap—commonly referred to as a research-to-practice gap (RPG)—constitutes an important

problem in many areas of research, including healthcare (Glanz, Rimer, & Viswanath, 2008;

Glasgow & Emmons, 2007; Wandersman et al., 2008) with particular emphasis on mental

health (Jensen et al., 1999; Kazdin, 2011, 2017, 2018; Kazdin, Fitzsimmons-Craft, & Wilfley,

2017). Other important fields investigating RPGs include management practices (Bansal,

Bertels, Ewart, MacConnachie, & O’Brien, 2012; Burke & Rau, 2010; Rynes, Colbert, &

Brown, 2002), education (Coburn & Penuel, 2016; Strohman, 2014), and civil practices such

as social work (Rountree & Pomeroy, 2010).

This project studies a RPG in mental health care. Mental health care is a burgeoning

field of both research and practice, especially as mental health issues become more prominent

in the United States (Olfson, Druss, & Marcus, 2015). Developments in mental health

treatments are typically of two types: pharmacological (e.g., new drugs) or therapeutic (e.g.,

new models of psychotherapy). My aim is to exploit the differences in these innovations to

examine a potentially differentiated rate of innovation take-up among practitioners. I exploit

quasi-random attendance of professional trainings (in the form of professional conferences)
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in both psychotherapy and psychopharmacology among mental health professionals, and

assess the impact of each. I implement a panel event study design to assess changes in

treatment patterns for therapists who are most likely to attend professional conferences in

eating disorder treatments. I explore potentially differentiated responses by provider type

and patient demographics, and conclude with an exploration of potential mechanisms for

these responses and a validation of my treatment assigning algorithm.

I find muted response among mental health professionals to either kind of professional

conference. While this may be the result of an overtaxing estimation process, it provides

some suggestive evidence that continuing medical education is not the driver for changes in

the treatment behaviors of therapists. Therapists did increase their use of olanzapine (an

atypical antipsychotic occasionally prescribed for eating disorder treatments, discussed more

in Section 2.2). Interestingly, this response occurred only among non-psychiatrists (e.g.,

psychiatric nurse practitioners) and was used on adolescent patients. However, therapists

did not have a similar response to therapeutic education; in fact, when exploring the over-

all variation in a provider’s treatment profile, I find suggestive evidence that a conference

discourages experimentation.

For clarity, in this paper I make the (somewhat informal) distinction between tangible and

intangible innovations. Tangible innovations are algorithmic in nature: while they may re-

quire specific skills and training to be able to implement, their implementation requires little

creativity and varies little across implementations and practitioners. Many of the innova-

tions that come easily to mind—new drugs, medical equipment, etc.—fall into this category.

In contrast, intangible innovations depend more heavily on human capital, and therefore can

vary widely based on who is implementing it (or even across cases with the same practi-

tioner). The example of intangible innovation used in this project is psychotherapy, which is

a rigorous and scientific medical treatment, but also requires a conscious cultivation of rela-

tionship between therapist and patient that is impossible to achieve algorithmically. While

new therapeutic techniques can be proposed and validated by mental health researchers,

the passing on of these guidelines from researcher to practitioner will inevitably leave room

for practitioners to adapt the practice to their own treatment style, potentially altering the

benefits of the development. Other examples of intangible innovations in health care include

testing and prescription guidelines (Mullainathan & Obermeyer, 2019), as well as any other

behaviors subject to clinician interpretation.

Of course, this distinction is a simplifying one, as nearly all innovations contain elements

of both “art” and “science”. For example, Graham, Lattie, and Mohr (2019) discuss the im-

plementation of new digital mental health technologies, an ostensibly algorithmic innovation

(e.g., a cell phone application) that requires specialist understanding of the mechanisms at
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play in order to be successfully integrated into a treatment plan. While elements of arti-

sanal and algorithmic innovations exist in almost every development (particularly in a field

such as mental health), I have attempted to choose two key innovations that are as close to

purely tangible and intangible as possible: psychotropic medication and psychotherapeutic

techniques.

The contributions of this study are both methodological and practical. First, this study

proposes a way to point identify dynamic treatment effects even in the presence of clas-

sification error. This extension of recent work (most notably, Calvi et al., 2019) increases

researchers’ flexibility to answer causally motivated questions in the presence of limited data,

as well as suggesting ways predictive algorithms (such as machine learning techniques) could

be used in causal designs. In addition, this paper discusses how an interpretation of these

results might change when the necessary assumptions are implausible or hold only partially,

and outlines how validation samples can be used to test the necessary assumptions.

The factors and frictions affecting technology diffusion is a central question in economics—

and health economics in particular—and this paper contributes to this rich literature by

assessing diffusion under heterogeneous take-up costs on the innovation side. Recently, this

literature has been concerned with proposing explanations for heterogeneous rates of innova-

tion take-up; these solutions explore factors such as differences in social network structures

(Arieli, Babichenko, Peretz, & Young, 2019), the presence of network effects (Ackerberg

& Gowrisankaran, 2006), and variations in take-up costs among potential users (Ryan &

Tucker, 2012). However, each of these projects considers only one innovation at a time in or-

der to prioritize demand-side heterogeneity (Young, 2009). In contrast, the current project

examines how different innovations—with potentially varying take-up costs—compete for

takeup among practitioners. The current setting allows for identification of reduced form

evidence exploring the ways these costs drive differences in take-up within a specific clinical

population (mental health professionals).

From a clinical perspective, this project also contributes to a broad discussion on gaps be-

tween research and practice by highlighting one of the most common frictions in the diffusion

of ideas: communication. Some papers find strong responses of medical professionals to ran-

domized trials (Depalo, Bhattacharya, Atella, & Belotti, 2019), but the dissemination of this

information is not always straightforward (Casper, 2007; Grimshaw et al., 2001). Continuing

education is the most common method by which medical professionals receive information

about new medical research (Church et al., 2010). However, as even medical conferences

become more specialized, tailored either to academics1 or professionals, continuing educa-

1For example, the Eating Disorders Research Society holds an annual conference limited only to its
members. As a result, only academics attend, not professionals.
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tion has the potential to devolve into a “blind leading the blind” environment, where the

trainers are as removed from medical research as the trainees. This, and many other factors,

warrants an evaluation of continuing education as a potential source of research-to-practice

gaps. This study contributes not only to a discussion on the uses of continuing education,

but also a much larger literature on innovation diffusion in intangible settings.

Finally, this paper is also tangentially related to a burgeoning literature on the diffusion

of ideas, a discussion on how intangible goods such as international ideals (Gilardi, 2012)

and social movements (Rane & Salem, 2012). For example, Ash, Chen, and Naidu (2019)

examine the spread of economic language among judges following a training program. Their

particular type of policy evaluation (with dynamic treatment effects) is similar to the aims

of this paper.

2 Background & Data

The diffusion of innovation into practice is a central issue for nearly every area of technolog-

ical advancement. In simple cases, standard economic models predict that technologies that

increase marginal benefit or decrease marginal cost will have quicker take-up by practitioners,

becoming a new norm until further innovation disrupts the equilibrium again (Christensen,

Baumann, Ruggles, & Sadtler, 2006; Christensen, Grossman, & Hwang, 2009; Christensen,

Raynor, & McDonald, 2015). However, in the presence of frictions, the diffusion of innova-

tions may depend on much more than their simple benefit/cost contributions, and standard

models may be insufficient to predict how a field will develop. This is particularly true when

innovations are intangible in nature, as this makes them particularly vulnerable to frictions.

2.1 Research to Practice Gaps

One friction that is particularly salient in the diffusion of intangible medical innovation is

a growing divide between academics and professionals (Kazdin & Blase, 2011; Kazdin et

al., 2017). With increasing specialization, a burgeoning field such as mental health care

becomes split into two camps: one performing and reporting the results of clinical trials and

other research, and a second that interprets and incorporates these results as they treat real

patients. However, as this specialization progresses, the distance a new idea must travel

from the laboratory to the patient increases, raising the chances that it will either not be

adopted, or adopted in some stunted capacity.

Communication between these two groups—especially in the medical profession—is in-

centivized through continuing medical education (CME) programs for practitioners. These
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programs are motivated by the documented fact that physicians who have been practicing

longer tend to stall in updating their practices, putting them at risk for delivering lower-

quality care (Choudhry, Fletcher, & Soumerai, 2005). While the structure of CME programs

tends to vary across states and facilities, a typical curriculum generally requires a mix of

completing courses taught by state-approved providers, preparing and teaching courses to

other professionals, and presenting at professional conferences, with additional options for

research, publications, or media involvement. Licensures may be awarded following the com-

pletion of certain milestones in a CME program, allowing a mental health professional to

advertise as “licensed” in an attempt to increase demand.

In recent years, CME programs have evolved to allow online learning through approved

online classes, webinars, and presentations. This has been done largely to reduce the burden

continuing education places on rural physicians (Curran, Fleet, & Kirby, 2006) and improve

access more generally. In fact, Hugenholtz, de Croon, Smits, van Dijk, and Nieuwenhuijsen

(2008) have demonstrated that online continuing education is just as effective as traditional,

in-person lectures. Despite this, most states still require at least some continuing education

to be done in person. Because of this, professional conferences continue to be hubs for

continuing education presentations, exams, and courses.

The potential benefits for professional conferences are inherent in the nature of the event,

and tend to be highly favored by practitioners (Dysart & Tomlin, 2002). In fact, according

to Dysart and Tomlin, professional conferences are attended with about the same frequency

as all other continuing education events combined;2 however, their work also highlights

the difficulties associated with receiving education through expensive and travel-intensive

methods such as conference attendance. Healthcare facilities are rarely generous in providing

time off for conference attendance, and conference and travel fees are typically borne by the

provider rather than the employer.

2.2 The Case of Eating Disorder Treatments

In an attempt to assess the quality of communication and training in inducing innovation

takeup, the current project examines continuing education on practices in the treatment of

eating disorders. These mental disorders centered around unhealthy relationships with food

and eating. They include anorexia nervosa, typified by body dysmorphia and severe restric-

tion of food intake; bulimia nervosa, characterized by purging excessive food consumption;

binge eating disorder, a disease marked by superfluous food consumption (but no purging);

and other unspecified diseases. This study will focus on patients with diagnoses of either

2Their study examined occupational therapists, rather than mental health professionals.
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anorexia nervosa or bulimia nervosa exclusively.3

These diseases are ideal for the current study for three principal reasons. First, these

diseases have the highest mortality rate of any mental illness (Arcelus, Mitchell, Wales, &

Nielsen, 2011), making them a pragmatically relevant area of focus. Second, treatment of

eating disorders involves both algorithmic and intangible processes: for example, the refeed-

ing process of severely malnourished anorexic patients is medically more straightforward

than the psychotherapeutic aspects of treatment. However, as discussed in more detail be-

low, many of the algorithmic treatment methods—such as pharmacological treatments—have

much weaker empirical support than psychotherapies. Hence, in the absence of a research-

to-practice gap biasing treatments towards algorithmic interventions, one should observe the

use of intangible treatments (e.g., psychotherapy) dwarfing the number of pharmacological

interventions. Finally, the study of eating disorders meshses well with available data. While

it is a myth that they affect only female adolescents from the middle- and upper- classes

(Mitchison, Hay, Slewa-Younan, & Mond, 2014), a substantial number of those suffering

from this disease will have private insurance. Additionally, there are easily identifiable diag-

nosis codes for each eating disorder and treatment codes for the two treatments of interest

(family-based therapy and olanzapine prescriptions, discussed below). Therefore, I have a

clean identification of the populations and outcomes of interest.

While treatment patterns vary for each individual patient, treatment of eating disorders

is recommended to follow a team-based model of care (American Psychiatric Association,

2006), with the team generally comprised of a principal psychotherapist, a dietitian (and

other general medicine professionals if needed to deal with secondary effects of the disor-

der), a psychiatrist, and occassionally a social worker. Treatment proceeds in stages, with

early stages focused on rectifying any secondary effects of an eating disorder (e.g., a re-

feeding or rapid weight gain process), and later stages focusing on mental health treatments.

Hospitalizations—if any are required—typically take place in the first stages, with the latter

stages largely taking place in an outpatient setting. It is this latter, mental health-oriented

stage, with which this project is concerned. This stage typically consists of two major treat-

ment modalities: psychotherapeutic and psychopharmacological.

Family-based therapies (FBT) are considered an optimal therapeutic intervention for the

treatment of anorexia nervosa, bulimia nervosa, and eating disorders not otherwise specified

(Loeb, Lock, Greif, & Le Grange, 2012). In this treatment, family members of a patient are

integrated into a team of health professionals, as opposed to other psychological practices,

which at best ostracize family members and at worst paint them as responsible for mental

3Note that binge eating disorder did not have its own diagnosis code until the release of the ICD-10-CM
Diagnosis Codes, which were used beginning in October 2015 (after my sample started).
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illnesses (Le Grange, Lock, Loeb, & Nicholls, 2010). FBT, developed at the Maudsley hos-

pital in London by Dare and Eisler (2000) and manualized for anorexia nervosa by Lock and

Grange (2015), currently boasts the strongest empirical support of any psycho-therapeutic

intervention for treating anorexia nervosa, including hospitalization.4 The two most recent

meta-analyses—Couturier, Kimber, and Szatmari (2013) and Bulik, Berkman, Brownley,

Sedway, and Lohr (2007)—each conclude that family-based treatments are more efficacious

than many routine treatment methods, particularly for adolescents and youth. Importantly,

the advantages of FBT are most notable in the long-term, with positive impacts 6–12 months

after treatment that outweigh even the benefits of individual cognitive-based therapy (Cou-

turier et al., 2013). As these authors write:

“Family therapy focusing on symptom interruption of eating disordered behav-

iors should be recommended as the first line of treatment for adolescents with

eating disorders. Given the growing evidence base for FBT for adolescents with

eating disorders, it would be prudent to study implementation strategies and

effectiveness of this treatment in the community.” (Couturier et al., 2013)

Family-based therapy is recommended by the American Psychiatric Association (Ameri-

can Psychiatric Association, 2006) and the National Institute for Health and Care Excellence

in the UK (for Health and Care Excellence, 2017) as the main intervention for eating dis-

orders. Despite this, however, the overall use of FBT in eating disorder treatments in the

outpatient setting remains consistently low. Figure 1 shows the percentage of all eating disor-

der patients in the MarketScan data receiving any form of family-based treatment over time.

The graph shows that only around 15% of the 23,000 patients in the sample (and around 26%

of the 10,000 youth and adolescent patients) ever receive FBT in their treatment. Further-

more, the graph shows the publication dates of major RCTs and meta-analyses positively

evaluating FBT, with little implied physician response shown as a result. This suggests that

providers may already have sorted into those who provide FBT to their patients and those

who do not, and that the current stream of ongoing research does not affect their decision

to provide this treatment.

Of course, FBT will not be ideal for every eating disorder patient. Factors such as family

instability, need for longer treatment, and co-morbid psychiatric disorder may influence a

patient’s lack of response to FBT (Lock, Couturier, Bryson, & Agras, 2006). Additionally,

FBT has been proven more useful for adolescents than adults (Bulik et al., 2007). Finally,

some specialists are able to use family-based techniques across a wide range of diagnoses out-

side of eating disorders; this may incentivize certain mental health practitioners to specialize

4A complete list of RCTs evaluating the effectiveness of FBT for eating disorder treatments can be found
here.
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Figure 1
Therapist Response to Publications on Family-Based Therapy

in a family-based approach, allowing specific patients to seek out this treatment modality if

they feel it may be a good match for their needs.

The second major treatment modality for eating disorders is pharmacological; however,

the evidence base for this style of treatment is scant relative to that of therapeutic techniques.

There are only two FDA-approved medications for eating disorder treatments: fluoxetine for

bulimia nervosa (approved in 1994) and vyvanse for binge eating disorder (expanded approval

to BED in 2015), both of which suppress purging behaviors. Additional medications—

particularly SSRIs or other antidepressants—are typically prescribed to assist in mitigating

co-morbid depression and/or anxiety symptoms (American Psychiatric Association, 2006).

Overall, there are no good pharmacological treatments to handle a patient’s relationship

with food, making the therapeutic treatment arm essential.

Even without empirical support, an increasing number of prescribers have begun en-

gaging in off-label experimentation in the treatment of eating disorders (Maglione & Hu,

2011). Much of this experimentation uses atypical antipsychotics—which are FDA approved

and typically prescribed for schizophrenia and bipolar disorder—to manage weight gain.

For example, olanzapine (the most commonly prescribed atypical antipsychotic for eating

disorders) is known to induce weight gain as a common side effect, and hence has been

viewed as potentially useful in anorexia nervosa treatments (Flament, Bissada, & Spettigue,

2012). While there have been some studies examining these medications (see Maglione and

Hu (2011) for a meta-analysis), there is not enough conclusive evidence that these medica-
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tions are effective in treating eating disorders to warrant a change in their FDA approval

status presently; however, continuing education and professional conferences still include

discussions of incorporating off-label drugs into psychopharmacological practice in an ED

treatment profile.

2.3 This Project

This project focuses on a single potential friction between academic research and practice:

the impact of professional education. Specifically, I focus on the implementation of FBT

and prescription of olanzapine in eating disorder treatments, two innovations that embody

different styles of innovation and may thus diffuse differently. The prescription of olanzap-

ine, while an off-label practice with relatively little empirical support, has a straightforward

implementation, and constitutes a more algorithmic innovation. However, the use of family-

based therapies requires specialists to provide a higher level of care, and its implementation

therefore varies widely across therapists, in keeping with intangible innovation. This het-

erogeneous implementation of FBT in eating disorder treatments has been documented in

Kosmerly, Waller, and Robinson (2015).

To evaluate this takeup, I use a list of about 70 conferences targeted at eating disorder

professionals and clinicians. For each conference whose online program is available, I am able

to ascertain if the conference ran any sessions or presentations on either FBT or olanzapine

use in ED treatments, as well as creating a registry of the conference locations and times.

Table 1 shows the organizations and conferences examined. Aside from conferences whose

programs are not available, I have the universe of such professionally-oriented conferences.5 I

couple this with a sample of 4,476 therapists and professionals from the Truven MarketScan

data to examine treatment profiles of specialists before and after conference attendance.

The main complication is that I have no data on who actually chose to attend each

conference;6 instead, I will estimate treatment status based on each specialist’s cost (in

travel) of attending a conference. By assuming that therapists are more likely to attend

conferences that are low-cost to them, I am able to artificially assign specialists to treatment

and control groups, as discussed in more detail in Section 3.1. Finally, I extend recent

work on dealing with classification error in treatment effect models (Calvi et al., 2019) to

approximate the local average treatment effect of attending these conferences.

Hence, this paper provides two distinct contributions. The first is methodological in

5Note that this excludes academic conferences which are limited to members of the academic organization
only (for example, the Academy of Eating Disorders) as not all clinicians would have the opportunity to
attend.

6Note that I have data on conference registration for a few conferences, which I will use in a validation
exercise in Section 5.
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Table 1
Professional Conferences on Eating Disorder (ED) Treatments Examined

Organization Conference Name Frequency Total
Programs

FBT Olanzapine

Academy for EDs International Conference
on ED

Annual 9 7 4

American Academy of Child &
Adolescent Psychiatry

AACAP Meetings Annual 10 2 4

Annual Eating Recovery
Foundation

ERF Conference Annual 3 3 0

Center for Change National ED Conference
for Professionals

Annual 5 1

International Association of ED
Professionals

IAEDP Symposium Annual 9 6 2

Maudsley Parents One-Day FBT Conferences Sporadic 3 3 0
Multi-service ED Association MEDACon Annual 3 2 1
National ED Association NEDACon Annual 4 3 0
Renfrew Center Foundation Conference for

Professionals, Seminar
Series

Annual+ 15 8 0

Center for ED at Sheppard Pratt Professional Symposium Annual 6 3 0
Summit for Clinical Excellence National ED Conference Sporadic 4 1 1
UCSD ED Treatment Center Trainings for Professionals Sporadic 2 1 0

Total: 73 40 12
1. Abbreviations: ED = eating disorder; AACAP = American Academy of Child & Adolescent Psychiatry; ERF =
Eating Recovery Foundation; IAEDP = International Association of Eating Disorder Professionals; FBT = Family-
based therapy; UCSD = University of California at San Diego.

nature, and presents a toolkit of econometric techniques to assist researchers in overcoming

data limitations. Specifically, this paper introduces an instrumental variables technique for

the event study approach, integrates predictive algorithms into a causal framework, and

extends results that adjust these frameworks for classification errors. Due to the reasonably

complicated procedure by which my results are derived, several sections of this paper are

dedicated to the exposition of the algorithm and intuition behind its use.

Secondly, I present information detailing how medical professionals respond to contin-

uing education in the form of professional conferences. I argue that these responses are

potentially differentiated on the basis of which techniques or tools are being discussed, and

examine heterogeneity by audience (specialist type) and population of interest (patient de-

mographics). Ultimately, the results of this exercise provide little evidence that continuing

education changes behavior in the aggregate, either for intangible or algorithmic innovations

(psychotherapy and prescriptions, respectively). This finding warrants future research in

light of the severe data limitations and complex econometric procedure, which is taxing for

the available data; however, if true, this finding suggests a need to better understand the

optimal way to transmit information to practicing professionals.
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3 Empirical Design

Dynamic treatment effects are at the heart of questions surrounding innovation adoption. I

am ultimately interested in how professional conferences impacted the use of FBT and olan-

zapine over time for each specialist who attended. I have concrete data on each specialist’s

treatment profile for their subset of patients who are covered by an insurer in the MarketScan

database; however, I do not have reliable data on conference attendance for these physicians.

My empirical approach will (i) estimate treatment status for each medical professional and

conference, (ii) estimate a dynamic treatment effect of professional education using an event

study framework, and (iii) adjust for potential classification error in the first step.

This project combines various econometric approaches to attempt point identification of

my dynamic treatment effect of interest. To fill in data gaps, I employ a predictive algorithm

that infers who attends each conference; this suggests a place for more sophisticated machine

learning techniques in causal research designs. To deal with the flaws inherent in any such

algorithm, I extend an estimator that is robust to measurement error in a treatment variable

to an panel event study framework.7 Using this estimator in tandem with a transformed IV

approach allows me to approximate a Dynamic Local Average Treatment Effect (D-LATE)

for the specialists in my sample who are induced to take-up treatment (the compliers).

Event study designs have become increasingly popular in recent years (see Abraham and

Sun (2018); Borusyak and Jaravel (2017); and de Chaisemartin and D’Haultfoeuille (2019)

for important reviews on the subject). These designs rely on variation in treatment time

(with or without the presence of a control group to explore treatment effects in periods both

leading up to and following the treatment period, as well as the presence of a control group

to correctly control for time fixed effects (Hull, 2018). This design can flexibly be used to

explore heterogeneous responses in an appealing way when the number of groups to compare

is relatively small, as in Johannesen and Stolper (2017).

3.1 Estimating Treatment Categories

While my data are ideally suited for the study of a medical professional’s treatment profile,

they contain no information on continuing education or conference attendance. Hence, I

use a predictive algorithm to infer each specialist’s decision to attend a CME conference

based on their travel costs. The algorithm is based off of the assumption that given that

opportunities for continuing education are nearly ubiquitous, decisions to attend conferences

for professionals will be driven largely by costs: an ED specialist in Boston is far more

7The Mismeasurement Robust LATE Estimator of Calvi et al. (2019), discussed in more detail in Section
3.3.1.
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likely to attend conferences when they are held in New England than when they are held in

California.

Details of this algorithm are relegated to Appendix B for brevity. In general, for each

mental health specialist and each conference, I compute a measure of travel cost taking

into account both the physical cost of travel and the opportunity cost of time. From this

continuous measure, I infer a treatment group as the smallest η-percentile of specialists

when ranked by their travel costs. This move from a continuous variable to a discrete one is

motivated by the classification error framework laid out in the next subsection; by varying

this threshold I change the probabilities of misclassifying a treated/control therapist in a

near-monotonic fashion.8 This is useful for the assumptions of the MR-LATE estimator

discussed in Section 3.3. However, future research might explore the potential use of this

continuous measure in a propensity-weighting framework, as well as how such a framework

compares to that of Calvi et al. (2019). Additionally, future research could integrate more

sophisticated machine learning techniques to improve prediction accuracy, providing a better

approximation of the true LATE (as discussed in Section 3.3).

Figures 2 and 3 show an example of the algorithm’s output for a sample conference for

professionals that took place in September 2012 in Boston. Figure 2 shows the estimated

travel cost to attend the conference for each specialist in the sample at that time, while

Figure 3 shows the estimated distribution of travel costs, including various cities as reference

points. Specialists in cities farther away from Boston incur greater travel costs to attending

the conference, but those in distant rural areas (such as Mountain Home, Idaho) incur

even greater travel costs. By selecting the lowest η-quantile of the distribution, different

treatment groups are created, with differing levels of austerity in selecting the treatment (or

control) groups9. Notice that these treatment groups are not merely centered around the

conference location—indeed Atlanta, Georgia, which is a hub for major airlines, has a lower

travel cost to a Boston 2012 conference than does New Haven, Connecticut. This illustrates

that incorporating travel costs into the predictive algorithm may provide an improvement in

prediction quality over a simple geographic distance calculation.

When repeated for all conferences, this procedure creates estimated treatment groups for

each of the conferences in the sample (40 conferences for FBT trainings and 12 for olanzapine

prescriptions). In order to conduct an event study analysis, it is important that treatment

be an absorbing state for each therapist;10 hence, each therapist is assigned a treatment date

8That is, as η increases, I tend to increase the probability of classifying a control therapist as being
treated, while decreasing the probability of classifying a treated therapist as part of the control group.

9The red line in Figure 3 illustrates a treatment group based on the lowest 10% of travel costs.
10That is, each specialist ought to be treated only once, and remain treated throughout the duration of

the sample after that.
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Figure 2
Estimated Travel Cost for all Specialists, Boston 2012 Conference

as the earliest time period for which it is estimated that they attended a conference on FBT

or olanzapine. From this estimated treatment time, relative time dummies typical for an

event study are created, completing the necessary data configuration.

3.2 Instruments in Event Study Designs

While the use of instruments in an event study is rare compared to their prevalence in other

empirical designs, the generalization from the instrumented difference-in-differences design

(DDIV) to an instrumented event study design (ESIV) is straightforward. As explained in

Hudson, Hull, and Liebersohn (2017), the basic model for the DDIV is Equation 1:

yit = αi + τt + βDit + εit, (1)

where αi and τt represent individual and time fixed effects, and Dit is the binary (potentially

endogenous) treatment status.11 To deal with the endogeneity of treatment Dit, a binary

instrument Zit is used.

The event study framework generalizes this by mapping between a single treatment

indicator Dit and a vector of relative time dummies, which indicate how much time has

elapsed since the treatment event. For each individual i in a panel, the event is denoted as

11Note that additional controls can be added if desired. I ignore them in this section to simplify the
exposition.
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Figure 3
Estimated Distribution of Travel Cost for all Specialists, Boston 2012 Conference

Ei = mint{Dit = 1}; given this, each period t can be assigned a value Kit = t − Ei. This

essentially re-orders the time periods in a panel so that each individual appears to have been

treated simultaneously. Once this is complete, the estimating equation can be written as

Equation 2

yit = αi + τt +
∞∑

k=−∞

γk1 {Kit = k}+ εit. (2)

In this setup, each parameter γi indicates the effect of the treatment event on the outcome

variable i periods before or after the event itself. See Borusyak and Jaravel (2017), de

Chaisemartin and D’Haultfoeuille (2019) for a more detailed discussion of the event study

approach. Generally, applied researchers do not estimate the fully dynamic specification

(where k ranges over all integers), but limit k ∈ [−A,B] for two positive integers A and

B12. This establishes the vector parameters (γ0, γ1, ..., γB) as the parameters of interest

(sometimes referred to as the dynamic treatment effect parameters).

Suppose now that there exists a valid instrument Zit for Dit. To transform this instrument

to be a valid one for the event study approach, one need only follow the same procedure

outlined above: for each individual i, define the instrumented event Z ′i as the point that is

most likely to induce the treatment event, then define the relative time periods Z ′it = t−Z ′i
12For identification, such an approach requires omitting a dummy as a reference group, which is typically

chosen to be γ−1.
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as before. Given that Zit is correlated with Dit, the transformed instrument Z ′it will be

correlated with Kit, ensuring that the procedure is valid.

My main instrumental variable is the presence of a “slow spell” for a therapist in the

months leading up to a conference. Specifically, if a specialist’s average patient volume 4–6

months prior to a conference is lower than their overall average volume, the binary instrument

is given a value of 1 (and 0 otherwise). By indicating a potential decline in patients treated

during a registration period for a conference, I hypothesize that this instrument will be

positively correlated with true conference attendance. Additionally, since such a measure

is uncorrelated with both (i) distance between therapist and conference and (ii) therapist

treatment profiles, this measure is a valid instrument for the treatment. I therefore define

Z ′i as the period with the lowest measured lagged patient volume for each specialist i.

3.3 Dealing with Classification Error

Given that I infer treatment status based on an imperfect proxy (travel costs), dealing with

classification error is a first order concern in my estimation approach.13 There is a small, but

vibrant, literature on dealing with classification errors in applied microeconometric models.

The most notable of these papers, Lewbel (2007b) point identifies the average treatment

effect (ATE) in a simple treatment effects model. Other important papers extend this result

to include covariates or discretized treatment levels (Hu, 2008; Lewbel, 2007a; Mahajan,

2006). Most recently, these researchers have turned to the problem of estimating Local

Average Treatment Effects (LATEs) in the presence of potentially endogenous selection

into treatment. This paper extends the recent work of Calvi et al. (2019), who identify a

mismeasurement-robust estimator of the LATE (the MR-LATE) used for bias reduction in

classification error problems.14

3.3.1 The MR-LATE Estimator of Calvi et al. (2019)

Calvi et al. (2019) propose an estimator that is “mismeasurement robust” in the sense that

it can approximate the LATE under weak assumptions. In their framework, there is a true

treatment status D ∈ {0, 1}, which is unobserved and cannot be consistently estimated. In

13Classification error refers to measurement error in a variable denoting treatment status. Ignoring this
error—which by construction is nonclassical—can lead to serious problems in estimating a treatment effect,
as discussed in detail in Millimet (2010). Kreider (2010) shows that even in a case of infrequent classification
error—from 2% or less—can result in estimated effects whose confidence intervals do not overlap the true
treatment effect, and may even suggest the opposite sign of the true ATE.

14There is another recent paper that tackles this issue (Yanagi, 2018), but this requires additional as-
sumptions and applies to a more restricted class of circumstances.
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addition, there exists a binary instrument Z such that the typical LATE assumptions of

imbens˙identification˙1994 are satisfied (as replicated in Assumption 1).

Assumption 1: LATE Assumptions. The outcome Y and true treatment status D,

together with a binary instrument Z satisfy:

i. 0 < E[D] < 1, 0 < E[Z] < 1, and Z⊥(Y1, Y0, D1, D0).

ii. (Y1, Y0, D1, D0, Z) are independent across individuals and have finite means.

iii. There are no defiers, hence P(D0 = 1 ∩D1 = 0) = 0,

where subscripts are indicative of potential outcomes following the typical framework.

While D cannot be consistently estimated, it is approximated by two imperfect measures

T a, T b ∈ {0, 1}. These measures satisfy an extended set of the LATE assumptions in As-

sumption 2 (where compliers are denoted by C):

Assumption 2: Mismeasured LATE Assumptions. T i is such that the following

conditions are satisfied for i ∈ {a, b}:

i. Z⊥(Y1, Y0, D1, D0, T
i
1, T

i
0).

ii. (T i
1, T

i
0)⊥(Y1, Y0)|C.

iii. E[T i
1 − T i

0|C] 6= 0.

That is, in addition to the typical unconfoundness assumption, Assumption 2-i assumes

the instrument is independent of the potential measurement errors in T i. The second part

of the assumption indicates that the potential outcomes of each mismeasurement are in-

dependent of the potential outcomes of the dependent variable Y ; combined with the first

assumption, this asserts that any measurement errors are uncorrelated with outcome vari-

ables. Finally, Assumption 2-iii requires only that T provide some information about D.

Given these two assumptions, Calvi et al. (2019) apply the reasonable well-known fact

that a transformed two-stage least squares (2SLS) regression of Y T on T (using Z as the

instrument) can be written as a mixture of the potential outcomes for compliers:

Cov(Y T i, Z)

Cov(T i, Z)
=

E(Y T i|Z = 1)− E(Y T i|Z = 0)

E(T i|Z = 1)− E(T i|Z = 0)
(3)

= E [qY1 + (1− q)Y0|C] , (4)

where q is a weight related to the probability of measurement errors in T given true treatment

D. Given this result,15 Calvi and coauthors define the MR-LATE estimator as the difference

15This result is not unique to Calvi et al. (2019), but has been mentioned in earlier work, including Abadie
(2002) and Ura (2018).

16



in two 2SLS estimators, given the two mismeasured treatments T a and T b:

MR-LATE ≡ ρ =
Cov(Y T a, Z)

Cov(T a, Z)
− Cov(Y T b, Z)

Cov(T b, Z)
.

Using this definition and the result from their first theorem (Equation 4), it follows

immediately that the MR-LATE is a multiple of the LATE, with the weighting (qa − qb);
Hence, the MR-LATE is equal to the true LATE when (qa − qb) = 1. A sufficient condition

for this to hold is that of Assumption 3:

Assumption 3: Sufficient Condition for MR-LATE = LATE. T a and T b are such

that the following two conditions are met:

i. pa0 = 0. That is, among compliers, the mismeasured treatment T a never mistakes the

actually untreated as treated.

ii. pb1 = 0. That is, among compliers, the mismeasured treatment T b never mistakes the

actually treated as untreated.

These restrictions—that one treatment group is strict in its definition of the treatment

group, and the other in its definition of the control group—are related to the no-defiers

assumption typical in a LATE framework. By eliminating certain combinations of D and

Z, the no-defiers assumption allows for a clean interpretation of the local average treatment

effect. In a similar vein, Assumption 3 rules out certain types of measurement errors, thereby

eliminating extraneous cases wherein the MR-LATE would be different from the true LATE.

As in cases where the no-defiers assumption is violated, an MR-LATE estimator approx-

imates the LATE in cases where Assumption 3’s conditions are nearly met (meaning that

qa − qb is close to one). Judging the extent to which the conditions of these assumptions

are met is typically impossible given the limitations of the data; however, I have obtained

actual conference registration data from recent ED conferences held by the Academy for

Eating Disorders, which I use as a validation sample in Section 5. With this new data, I am

also able to address concerns about a lack of strong identification arising from an imprecise

treatment group estimation.

3.3.2 This paper: The Dynamic LATE (D-LATE) Estimator

Extending Lewbel’s work to the event-study setting is relatively straightforward. Theorem

1 below restates the necessary setup and assumptions for the MR-LATE to be identified for

each parameter βi of the dynamic treatment effect.
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Theorem 1 Let {Y,D,Z, T a, T b} be such that Assumptions 1 and 2 are satisfied. Consider

estimating an instrumented event study regression (equation 2) on the transformed variable

T iY using T as the treatment measure and Z as the instrument. Then, for any time period

t relative to the treatment period, the dynamic treatment coefficient γt satisfies

γt = E[qY1 + (1− q)Y0|C], (5)

for a q related to the probability of mismeasurement in the substitute treatment measure T i.

See Appendix A for a proof of this theorem. This extension of the theorem relies on two

facts: first, that an event study design is simply a transformation of the DDIV estimator

into one with many dummy variables, as discussed in 3.2. Hence, estimating a LATE model

with one instrument is equivalent to estimating a corresponding ESIV model with many

instruments (one for each dummy). Second, as discussed in Angrist and Imbens (1995),

coefficients in two-stage least squares models with multiple instruments can be written as a

linear combination of each instrument-specific LATE.

Given the results on Theorem 1, the corollary of Calvi et al. (2019) immediately implies

that a dynamic version of the MR-LATE (which I call the dynamic MR-LATE or D-LATE

for short) is equivalent to the true LATE under the conditions stipulated in Assumption 3.

Hence, in order to resolve issues of classification error while still obtaining a dynamic treat-

ment effect, I use two measures of treatment status—one that never misclassifies the treated,

and another that never misclassifies the untreated—and the quasi-randomized instrument of

patient volume during the conference registration period, as discussed in Section 3.2.

For the two mismeasured treatment estimates, I can use the travel cost algorithm de-

scribed in the preceding subsection with varying thresholds. That is, I create two estimated

treatment groups for each conference, one with a very strict threshold for attendance (e.g.,

only the lowest ventile of travel costs) and one with a very liberal threshold (e.g., the 95th

percentile of travel costs). In this way, I ensure that one of the mismeasured treatments is

unlikely to mistake a truly treated professional as a control member, and the other is unlikely

to make the opposite mistake, thereby at least approximating the sufficient conditions for

the D-LATE estimator to be equivalent to the LATE.

I therefore obtain estimates and standard errors of the D-LATE using the following

procedure. First, I estimate two event study regressions (using equation 2) using T iY as the

dependent variable, T i as the treatment status (that determines the dummy variables), and

Z as the instrument. The MR-LATE estimator for each coefficient of interest γi is given by

γMR
i = γai − γbi . Finally, I obtain bootstrapped panel errors for each coefficient use the panel
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bootstrap method.16

4 Estimation Results & Heterogeneity

The D-LATE estimator was implemented to evaluate two sets of professional conferences: one

targetting the use of family-based therapies (FBT) and another the prescription of atypical

antipsychotics (olanzapine) in eating disorders. In both cases, I am interested in the effect

these conferences have on individual therapist experimentation; I therefore measure short-

term responses to a conference by the likelihood of utilizing an innovation in the first 6

months following the event.

The main results of the event study on FBT takeup can be seen in Figure 4. The point

estimates suggest that in the month following conference attendance, FBT techniques were

about 8 percentage points more likely to be employed. However, large bootstrapped standard

errors and large pre-trend effects suggest that this result is more attributable to sampling

variation than a true therapist response. Even if there is a short-term response, it quickly

diminishes in the subsequent periods, suggesting a short period of experimentation without

true adoption. As I will discuss in Section 4.1, this result is robust to multiple specifications.

A similar result holds for olanzapine prescriptions, as seen in Figure 5. The estimated

coefficients for this treatment effect are much smaller, with at most a 0.4 percentage point

increase in prescriptions after conference attendance. Overall, the results suggest little, if any,

change in prescribing behavior. The fact that this response is less dramatic than responses

to FBT is somewhat surprising, given my hypothesis about innovation types. I will discuss

potential interpretation of these results in Section 6.

4.1 Robustness

The main results shown above are robust to multiple expressions of the regression specifi-

cation. In particular, I compared results with binary and continuous dependent variables,

the use of all prescriptions (compared to only olanzapine prescriptions), and the decision

of whether to normalize the travel costs by specialist salary (as discussed in Appendix B).

Figures showing how the estimated coefficients changed based on these varying approaches

can be found in Appendix C.

In addition to these typical robustness checks, I also assessed how the results changed rel-

ative to my specification for the two mis-measured treatments. My specification uses cutoff

thresholds in travel costs to assign treatment status to specialists; however, as discussed in

16See Kapetanios (2008) for an excellent review of this procedure.
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Figure 4
Therapist Response to Family-Based Therapy Conferences

Section 3.3.2, there is a tradeoff between satisfying the conditions of Assumption 3 and max-

imizing their correlation with the true treatment status (e.g., mitigating concerns of a weak

instrument problem). I therefore repeat the estimation procedure using various treatment

thresholds, which can also be viewed in Appendix C. The results are quite consistent—if

anything, models estimated with more stringent treatment thresholds (smaller η) appear to

detect larger estimates, but have larger standard errors as well. While future work may

elaborate on the optimal decision of treatment threshold to balance the trade off inherent in

its selection, this figure provides sufficient evidence that the choice of threshold contributes

little to the overall result.

4.2 Heterogeneous Responses by Patient Age

While the overall results show little specialist response to professional conferences—whether

targetting algorithmic or intangible innovations—a null result may mask interesting hetero-

geneous responses. To that end, I investigate potentially differentiated responses by patient

and specialist type. First, specialists may respond to professional conferences selectively,

choosing to implement new techniques on a subset of their patient pool. Particularly, family-

based therapies have been shown to be more effective for adolescents and children, for whom

family structure is a more integral social context (Couturier et al., 2013). On the other hand,

pharmacological interventions may appear more tolerable for adult patients, especially those
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Figure 5
Prescriber Response to Olanzapine Conferences

for whom FBT is not a viable option.

To explore potential heterogeneity along this dimension, I re-estimate the results on the

subset of patients who are under 20 years old. Figures 6 and 7 show the results for the

effect of FBT and olanzapine professional conferences on treatment profiles for youth and

adolescents. The results for FBT use—a treatment which should ostensibly be easier to

implement among adolescents and youth—are practically identical to those shown in Figure

4; however, the results for olanzapine use suggest a small, but more significant, increase

in prescriptions for youth following pharmacological conferences. This suggests a certain

degree of differentiated response among practitioners based on the type of patients they see,

although not in the way one would generally hypothesize.

4.3 Heterogeneous Responses by Specialist Type

In addition to potentially heterogeneous response by patient types, specialists themselves

may differ in their responses to professional conferences. For example, specialists who

hail from a more academic background (e.g., psychologists) may place a higher priority

on evidence-based treatments, and may therefore be more likely to integrate FBT or olan-

zapine into their treatment profiles. To examine this question, I estimate an extended ESIV

model using the D-LATE procedure, including interaction terms for specialist types. That

is, I examine the specification in Equation 6:
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Figure 6
Therapist Response to Family-Based Therapy Conferences Among Patients Under 20

yit = αi + τt + ~γT t + ~δ (T t × si) + εit, (6)

where T t is the vector of relative time dummies used in the event study and si are the

relevant specialty types examined in the regression. Then, the coefficients of interest are

contained in the vector ~δ. Recent papers such as Johannesen and Stolper (2017) have used

this approach as a simple way to explore potential heterogeneous treatment effects.17

To examine heterogeneous takeup of FBT, I compare psychologists and therapists to

other mental health clinicians (family practice doctors, mental health facilities professionals,

etc.); for olanzapine prescriptions, I compare psychiatrists to non mental-health prescribers

(e.g., family practice doctors). Figure 8 shows the differentiated response for FBT takeup,

while Figure 9 shows the same for prescribing. In each figure, the first panel illustrates the

overall dynamic treatment effect (the vector γ in Equation 6), while the other panels are the

relevant parts of the δ vector for each specialist type—therefore, these panels are interpreted

as the relative differences in dynamic treatment effects for each group.18 Psychologists in

17Notice that it isn’t necessary to include level effects for each specialist type si ∈ si, as these will be
picked up by individual fixed effects (for the large majority of the individuals in the sample who don’t switch
provider types).

18If one wanted to construct the dynamic treatment effect for psychologists, say, one would add the γ
vector to the δpsych vector. The standard errors would stay the same as those around δpsych,t for all points
as this they are bootstrapped standard errors, which do not change under a linear shift.
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Figure 7
Prescriber Response to Olanzapine Conferences Among Patients Under 20

general appear to have a much higher fluctuation in the use of family-based therapy, but

tend to use it overall more than their counterparts. The point estimates suggest a higher

positive reaction to the use of FBT for them, but the pre-trends and large standard errors

prevent any definitive conclusions. Other mental health professionals (including therapists)

appear to have a more subdued response to professional conferences on family therapies.

The results for heterogeneity among prescribers are equally interesting. These estimates

have greater power issues than others in this paper due to a smaller group of treated physi-

cians. However, there is still a clear heterogeneous response among prescribers: mental health

professionals who are not psychiatrists tend to respond positively to these conferences, with

a small but significant (and lasting) increase in olanzapine prescriptions following the confer-

ence. Other prescribers show a less noticeable change in behavior; general practitioners do

not respond at all, and psychiatrists respond for only a few periods following the conference.

It may be that psychiatrists are better trained in understanding the risks of a pharmaco-

logical approach, or they may have more of an availability to engage in a psychotherapeutic

intervention than another mental health prescriber (e.g., a psychiatric nurse practitioner).

To the extent that either of these are true, professional conferences may reach those who

have less time for therapeutic responses, a higher tolerance for pharmacological risk, or both.
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Figure 8
Professional Response to Family-Based Therapy Conferences by Specialty

4.4 Experimentation as a Possible Mechanism

Overall, the results suggest a limited and short-lived response to professional conferences.

One potential explanation for this fact is that specialists return from conferences and ex-

periment with new techniques, gauging their overall effectiveness and ease of use before

integrating them into their regular treatment profile. But therapists who attempt to incor-

porate FBT, for example, may dislike the increased coordination cost or have a poor first

experience with the treatment, which may lead them to revert to their original treatment

methods.

To test this hypothesis, I explore the effect of these professional conferences on a spe-

cialist’s likelihood to expand their treatment set. I measure this likelihood by computing

each therapist’s Herfindahl-Hirschman index (HHI) of their treatment profile, as measured

by variation in their billed CPT codes. The HHI is calculated for each therapist i in period

t using the formula:

HHIit =
n∑

j=1

s2ijt, (7)

where sijt represents the fraction of provider i’s treatments in time period t that are in

the category j. I calculate the HHI using 9 categories, including individual, group, and
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Figure 9
Professional Response to Olanzapine Conferences by Specialty

family therapies amidst pharmacological interventions and other medical and administrative

claims.19

To the extent that different CPT codes perfectly capture differences in utilized treat-

ment,20 this provides one measure of how specialized a therapist’s treatments are. For exam-

ple, if a therapist specializes exclusively in family-based therapies, there will be no variation

in the treatment profile, leading to an HHI of 1; on the other hand, experimentation with

different treatment methods will cause the HHI to decrease.

I re-estimate the dynamic treatment effects for these conferences using the calculated

HHIs as the new dependent variable. That is, I measure to what extent professional confer-

ences induced specialists to expand (or contract) their treatment methods, inducing experi-

mentation or specialization respectively.

Figure 10 shows the effect that FBT conferences have on this measure of specialization.

Again, there are no strong results, although there is a slight increase in specialization at the

time of the conference (potentially lasting for a few periods). This may result from one of

two potential causes: first, the conference itself may impose limitations on a therapist’s time

19For reference, the 9 categories used are individual therapy, group therapy, family therapy, pharmaco-
logical interventions, evaluation and management, intake procedures, general consultations, hospitalization
treatments, and other codes used rarely.

20There has been a recent discussion on how well physicians agree on the relevant CPT codes for given
treatments (Bentley, Wilson, Derwin, Scodellaro, & Jackson, 2002; King, Sharp, & Lipsky, 2001) making
this calculation an imperfect proxy of true specialization. However, I believe that (given the categories I’ve
selected) disagreement about billing will be minimized in this case, thus making this a useful measure.
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for treatment, requiring them to treat only the patients that they are specialized to treat.

Second, it may also be the case that continuing education induces therapists to favor their

own special skill sets more, as they feel more trained to implement their techniques. Either

way, the effects do not suggest an increase in experimentation with new techniques after a

conference, which would be indicated by a negative trend. A similar result for pharmaceutical

conferences is relegated to Appendix C.

5 Travel Cost Validation

Critical to the interpretation of my results is the extent to which the D-LATE estimation

technique approximates the true LATE. That is, I would ideally understand the probabilities

that my treatment/control measures satisfy the conditions in Assumption 3. While I cannot

verify this in my sample given the unobservability of true treatment, I have obtained a

validation sample of conferences from the Academy of Eating Disorders; this will allow me

to obtain a sense of how well these assumptions might be satisfied in my main data.

For now, I have access to registration for the 2019 ICED Conference held in New York

City, NY.21 That is, I have records of each of the 612 unique US-based organizations which

sent professionals to the conference, as well as their geocoded locations. Figure 11 shows

the approximate home location of each attendee, with the conference location shown in red.

Notice that, as expected, a large fraction of attendees live in close geographic proximity to

the conference location. Interestingly, however, those who travel a greater distance to the

conference appear to be based in metropolitan areas, which have greater proximity to an

airport and subsequently lower travel costs.

I link this data to my Marketscan data in order to have some idea of a ”true” treatment

measure relative to a control group. To do so, I identify every therapist in my sample whose

main location is within a 10 mile radius of an ICED attendee location as being “truly”

treated. Next, to get an idea of how correlated my predicted treatment measure is with

actual attendance, I estimate predicted travel costs for each of the therapists in my sample

and the 2019 ICED conference. I then assign treatment groups using the same thresholds

used throughout the paper, so that η ∈ {1, 2, 5, 10, 15}. These are hypothetical, as my

sample does not extend to 2019, but will give an idea of how well the prediction algorithm

does relative to the truth.

First, I verify the conditions listed in Assumption 3, which are sufficient for the D-LATE

estimator to point identify the true LATE. Recall that for the two treatment measures T a

21I am in the process of widening this validation sample by working with other conference program
directors.
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Figure 10
Effect of Professional FBT Conferences on Therapist Specailization (HHI)

and T b, one needs to assume that T a never misclassifies the control group, and that T b never

misclassifies the treatment group. The probabilities of these misclassifications (labelled as pa0

and pb1) are identified for each threshold in Table 2 for the unnormed treatment algorithm.

T a Threshold pa0 T b Threshold pb1

0.01 0.0000 0.99 0.0074

0.02 0.0000 0.98 0.0086

0.05 0.0172 0.95 0.0103

0.10 0.0645 0.90 0.0360

0.15 0.1155 0.85 0.0406

Table 2
Estimated misclassification probabilities using ICED 2019 data (unnormalized)

In general, these misclassification probabilities decrease with η, suggesting that results

using smaller thresholds are closer to the true LATE. In fact, for this particular validation

sample, the probability pa0 decreases to exactly 0 after η < 5, and the corresponding probabil-

ity pb1 decreases to under 1%. This suggests that the conditions in the third assumption are

well approximated in my current sample, especially for the smallest two values of η (which

include my preferred specification of η = 2).

Additionally, identification of the D-LATE estimator depends on a nonzero correlation
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Figure 11
Actual Attendees of the 2019 ICED Conference in New York City, NY

between T i, i ∈ {a, b} and the true treatment status D. That is, the mismeasured treatments

must give some information about true treatment status; without doing so (or with too small

of a correlation), a problem similar to that of weak instruments arises. Although this cannot

be verified in my sample of interest, I can again utilize the verification sample to assess this

correlation. For brevity, the specific correlations are relegated to the Appendix; however,

these correlations are strong for most measures and average around 0.15, suggesting little

concern of weak identification.

5.1 Normed or Unnormed?

My travel cost algorithm assigned artificial treatment status based on two types of travel

costs: a simple monetary measure (unnormed) and one measured in units of hourly salary

(normed by salary). Thus, a simple question is to ask which of these measures best satisfies

the assumptions needed for the D-LATE estimator to be meaningfully interpreted. In con-

trast to Table 2, Table 3 shows the misclassification measures the predicted travel cost for

each therapist as a multiple of their expected hourly salary.
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T a Threshold pa0 T b Threshold pb1

0.01 0.0004 0.99 0.0149

0.02 0.0062 0.98 0.0257

0.05 0.0315 0.95 0.0389

0.10 0.0645 0.90 0.0691

0.15 0.1019 0.85 0.0915

Table 3
Estimated misclassification probabilities using ICED 2019 data (normalized)

Overall, the algorithm performs significantly more poorly when normalizing by salary

than when using a simple monetary measure. This is additionally advantageous because—as

discussed in Appendix B—the normed travel cost measure appears to over-assign treatment

status to those in the sample who make higher salaries (e.g, psychiatrists and family practice

doctors) over those who stand to benefit the most from the professional conferences (e.g.,

therapists and mental health facility workers). Given both of these results, results using the

non-normalized treatment algorithm should be taken as closer to the true LATE of interest.

6 Discussion & Conclusion

The methodology outlined above and the results arising from its application each have novel

implications. In general, my project identifies ways that researchers can augment limited

data with powerful statistical learning techniques to answer a broader range of questions

than currently accessible, as illustrated by my analysis of professional conferences and mental

health treatment behaviors.

6.1 Potential Uses of Methodology

A strong causal inference project typically requires rich data to be compelling. However, the

set of questions researchers ask far eclipses the amount of adequate data available to them.

The MR-LATE estimator of Calvi et al. (2019), as well as the D-LATE estimator proposed,

discussed, and utilized here, offer ways researchers can incorporate imperfect data into an

analysis without crippling it.

The estimator used in my project allows for the point identification of a dynamic local

average treatment effect (D-LATE) under relatively mild assumptions. Current statistical

learning techniques are more than capable of generating the mismeasured treatment assign-

ments necessary for the estimator, and can use validation samples or other techniques to
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ensure that the assumptions are met at least approximately. Even in cases where the mis-

classification does not satisfy the conditions of Assumption 3, the D-LATE estimator can

be looked at as a method of bias reduction, moving the estimated treatment effects closer to

the truth by taking into account the possibility of misclassification.

This paper utilized a rather simple predictive algorithm to estimate treatment status of

mental health professionals. Future research could integrate more advanced machine learn-

ing models in its place, thereby extending the set of questions the D-LATE estimator can

answer. Additionally, future econometric research may explore the instrumental variables

approach for event studies introduced here, identify more properties of the D-LATE estima-

tor, and discuss how the work of Calvi et al. (2019) extends to other commonly used causal

identification strategies.

6.2 Diffusion of Mental Health Treatments

This paper utilizes the methodology of the D-LATE estimator to allow imperfect data to

shed light on an important problem in the healthcare industry: the diffusion of ideas. By

examining how professionals respond to continuing medical education covering various types

of innovations, I am able to assess to what extent research-to-practice gaps are developing

in mental health treatments.

The results are suggestive that therapists respond more to tangible innovations than to

intangible ones. While there is no discernible response to conferences covering family-based

therapies, there are situations in which providers are seen increasing their prescriptions of

olanzapine following professional conferences on the subject. The identified heterogeneity

discussed in Section 4 corroborates this finding; therapists from strong medical training and

academic backgrounds (e.g., psychiatry and psychology) respond more positively to family-

based therapy, which has a stronger evidence backing, while eschewing the somewhat weaker

development of atypical antipsychotics. Interestingly, this increase in prescriptions occurs

more among the younger patient population, despite the fact that adolescents and youth

stand to gain the most from a family-based treatment approach rather than a pharmacolog-

ical one.

Of course, future research is critical to confirming these findings. A crucial step will

be extending this research beyond the Marketscan data, moving instead towards a holistic

assessment of provider behavior amidst patients of various degrees of insurance coverage.

Additionally, it will be important to gauge therapist response among other demographics,

including experience, academic training, and clinic type. Replicating this project on a richer

data set (such as all-payer claims data) can both confirm the validity of this estimator and
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its findings as well as identify with greater precision the subset of therapists who respond to

professional conferences.

There are important questions outside of this domain that must be answered surrounding

the impact of continuing medical education and research-to-practice gaps. This project

overlooked the role that referring physicians and other members of the treatment team

(e.g., dietitians) play in the decision to incorporate new treatments, either pharmacological

or therapeutic. However, it may well be the case that these sidelined parties can induce

innovation just as well—or better—than a CME program. Additionally, it may be useful

to examine how provider payment mechanisms, network effects, and insurance coverage all

dictate the decision to update or experiment with new treatments.

Finally, additional research may move beyond the communication problem of continuing

medical education and into other frictions that exacerbate research-to-practice gaps. One

might examine how the evolution of academic medical research may have siloed researchers

into their own niche, and how this affects researcher involvement with practitioners at all.

Additionally, projects might assess how researchers respond to other forms of media sur-

rounding new treatments, including research articles and magazines. Finally, it will be

useful to understand how implementing these new techniques affects the ultimate outcome

for patients, especially those being treated by an intangible innovation.

Only by obtaining a more holistic picture of the different frictions and mechanisms can we

hope to catch a glimpse at a solution to effectively incentivizing the diffusion of better mental

health practices. Similarly, recognizing the manifold characteristics of individual innovations

will allow a richer study of the economics of innovation. By doing so, future work can provide

real solutions to gaps between academic research and real-world practice, as well as foster

more efficient channels of communication in a broad spectrum of policy-oriented fields.
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Appendix A: Proof of Theorem 1

Proof of Theorem 1. Suppose that we observe a panel {Yit} of outcomes for individuals
i = 1, 2, ..., N and periods t = 1, 2, ..., T . Additionally, suppose that there is a true binary
treatment status Dit ∈ {0, 1} for all i and t—for consistency with the event study framework,
D = 1 is an absorbing state, so that Dis = 1 implies that Dit = 1 for all t ≥ s. Additionally,
there is a binary instrument Zit ∈ {0, 1} and two mis-measured treatments T a, T b satisfying
Assumptions 1 and 2 above.

The event study is estimated as follows (using the notation from Abraham and Sun
(2018)): for each individual, define the time of first treatment as Ei = min{t : Dit = 1} and
the related treatment-time dummy variables D`

it = 1{t − Ei = `}. The regression equation
is as in 2 with D`

it in place of the indicator variables.
As the true treatment is unobserved, we are interested in the local cohort-specific ATE

of a transformed regression of T jY on T j for T j ∈ {T a, T b}. That is, we are interested in
the vector ~γ resulting from estimation of:

T j
itYit = αi + τt +

−∑
`=−K

2γ`T
`
it,j +

L∑
`=0

γ`T
`
it,j + εit

In moving from a typical panel data analysis to an event study approach, we move from
a single treatment T j

it to a vector of dummy variables {T `,j
it }`. In the setting where the

fully dynamic equation is not estimated, there are L+K dummy variables to be concerned
with (as we drop the period ` = −1 to avoid any collinearity problems). We therefore
similarly expand the set of instruments from Zit to {Z`

it}, again of size L + K. This vector
of instrument dummies is created in the same way the vector of treatment dummies, and
described in Section 3.2. By expanding to multiple instruments, however, each coefficient in
a two-stage regression will be given by a weighted average of LATEs, as discussed in Angrist
and Imbens (1995). That is, for each resulting coefficient γ` on any dummy T `

it,j:

γ` =
L+K∑
k=1

βk
Cov(T j

itYit, Zj

Cov(T `
it,j, Zj

,

where the weights βk are in the interval [0, 1] for all k and satisfy
∑

k βk = 1. As in Calvi
et al. (2019), define q = p1

p1−p0 . Using their Theorem 1 and the result above:
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γ` =
L+K∑
j=1

βj
Cov(YitTit, Zj)

Cov(T `
it, Zj)

=
L+K∑
j=1

βjλj

=
L+K∑
j=1

βjE[qjY1 + (1− qj)Y0|C]

=
L+K∑
j=1

βjE[qY1 + (1− q)Y0|C] (as each qj = q)

= E

[(
L+K∑
j=1

βj

)
qY1 +

(
L+K∑
j=1

βj

)
(1− q)Y0|C

]
= E[qY1 + (1− q)Y0|C] (as weights sum to 1).

Hence, for any time period `, Calvi et al.’s Theorem 1 applies. One can therefore use
two mismeasured treatments T a and T b with the same properties as in their paper (so that
pa0 = pb1 = 0) and construct the local cohort average treatment effect:

ρ` = E
[
Y e
i,t+` − Y ∞i,t+`|Ei = e, C

]
= γ̂a` − γ̂b`
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Appendix B: Details of the Travel Cost Algorithm

The travel cost algorithm is used to infer the earliest date each medical professional was
exposed to a continuing education event targetting either FBT use or drug prescribing in
eating disorder treatments.

The first step in the algorithm is to assign a location to each specialist. While MarketScan
does not have specifically geotagged locations for their physicians, they do have information
on the Metropolitan Statistical Area in which the main enrollee on each insurance plan
resides. Hence, each claim in a physician’s treatment profile is tagged to one of these MSAs.
By taking the bulk of patients seen in a given month and taking a geocentric average of
their home MSAs (taking as each patient’s location the global midpoint of their MSA), I
can assign a specific location to each specialist-month observation. To avoid large errors, I
discard specialist-month observations that treat patients from larger than a 100-mile radius.

Once a specific location has been assigned to a specialist-month, I can compute the
travel costs between therapists and a given conference. The algorithm allows a specialist
to travel to the conference either by car directly, or by any network of flights. To estimate
driving time and costs, I allow for different average driving speeds in urban areas and on
freeways/interstates, and estimate the price of gas using data from the United States Bureau
of Labor Statistics (BLS). To estimate flying time and costs, I incorporate data on airport
locations, flight availability, and airfare from the United States Bureau of Transportation.
Then, I construct a network between a specialist’s origin point (their home location) and
their destination (the conference location) that allows them to (i) drive to any of the 5
airports closest to their home, (ii) take any network of flights from that airport to any of
the 5 airports closest to their destination, and (iii) drive from that airport to the conference
location. Once this network is completed, I assume that travelers will choose the cheapest
option (in terms of both airfare and opportunity cost of travel).

Opportunity cost of time is calculated using BLS wage data. I estimate this opportunity
cost in two ways: assigning each specialist in my data set the same hourly wage (the average
median wage for all specialist groups in the sample), or assigning each specialist group their
own median wage. For example, psychiatrists would be assigned a median wage of $105.95
per hour while mental health clinicians would be assign a median wage of $21.46 per hour.
Under the second method, travel costs are reported as a percentage of each specialist’s
average salary, to keep units consistent.

While there is clearly a large amount of variation in specialist wages, this variation
appears to be negatively correlated with true attendance. That is, those with the lowest
median wages (e.g., treatment center workers, therapists) have a greater incentive to attend
conferences on eating disorder treatments than general practice doctors or psychiatrists,
who treat a larger range of diagnoses. However, when adjusting for different salaries, I am
implicitly making the costs of travel (gas, airfare, etc.) less inhibitive for those with higher
salaries, so the algorithm may be more likely to predict treatment for those who are less
incentivized to truly attend.

As discussed in the paper, once this algorithm is complete, each specialist-conference
pair is assigned a travel cost c ∈ R. For the “unnormalized” option where each specialist is
assigned a flat salary, this is a monetary measure in 2016 U.S. dollars; on the other hand,
when different salaries are assigned to different specialists, this is measured as each specialist’s
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travel costs in salary hours. From this continuous measure, I form the dichotomous prediction
of treatment and control groups using an artificial cutoff η ∈ [0, 1], where any specialist with
travel cost at or below the value F (η) is considered to have attended the conference.
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Appendix C: Additional Results

As mentioned previously, the results shown in the paper are robust to several iterations of
estimation. I re-estimated the results with a continuous dependent variable instead of a
binary one, and with a travel cost that was normalized to be in terms of each therapist’s
estimated salary (instead of a pure monetary measure). These sensitivity results are shown
in Figure 12 for all 12 regression coefficients of the dynamic treatment effect. Note that
throughout, I include the figures only for family-based therapies; the results are similar for
olanzapine prescriptions.

Additionally, the results are re-estimated with various thresholds used in assigning treat-
ment/control status. Each treatment measure assumes that those therapists with travel costs
in the lowest η-percentile of all travel costs for a given conference attended it, and were thus
treated. Each specification consists of a treatment measure using η as the percentile, and
the other using 1 − η. For example, the specification of choice uses the “strict” treatment
measure as those whose travel costs are in the bottom 2%, while the “liberal” one applies
treatment to those in the bottom 98%. I also test specifications where η ∈ {1, 2, 5, 10, 15}.
The resulting variation in estimated coefficients is illustrated in Figure 13.

The results are generally quite consistent—if anything, models estimated with more strin-
gent treatment thresholds (smaller η) appear to detect larger estimates, but have larger stan-
dard errors as well. While future work may elaborate on the optimal decision of treatment
threshold to balance the trade off inherent in its selection, this figure provides sufficient
evidence that the choice of threshold contributes little to the overall result.
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