
C Additional Modeling Notes

C.1 Robustness of Dynamic Model

C.1.1 Symmetry of Loss Function

The loss function presented in Equation 4 of the text indicates a symmetric loss function

in the distance between mit and the health shock λit. This may not be desirable to the

extent that individuals would prefer to over-spend, rather than under-spend, relative to a

health shock; in essence, the costs of a ”false positive” health visit are much smaller than

the potential utility loss of a ”false negative,” where spending falls short of true needs.

However, careful examination of the loss function shows that whenever c′(·) ≤ 1, so that

the marginal OOP cost of an additional dollar of medical spending is less than 1, the utility

function in Equation (4) always leads individuals to prefer over-spending to under-spending;

this is consistent with its utilization in previous studies of moral hazard. To see this formally,

consider a deviation δ ≥ 0 from the health shock λit and notice:

u(λit + δ) = δ − 1

2ωi
δ2 − cit(λ+ δ) (1)

u(λit − δ) = −δ − 1

2ωi
δ2 − cit(λ− δ). (2)

In this case, under-spending is strictly preferred to over-spending if and only if

u(λit − δ) > u(λit + δ)⇔ c(λit + δ)− c(λit − δ) > 2δ, (3)

implying that the OOP costs associated with an increase in spending of 2δ must be greater

than the change in total spending (of 2δ). This is impossible in all regions of a health

insurance contract. Hence, the utility function preserves the desired asymmetry in which

individuals tend to over-spend when their OOP costs make the first-best choice m∗it = λit

infeasible (note that this is also visible in Equation 5 of the text).

C.1.2 Robustness Checks

I also show that the central model parameters (in particular, the parameters governing belief

updating, ~π) are robust to various modeling choices. Table 1 shows robustness to allowing

γ(·) to vary more flexibly, and allowing arbitrary correlations ρ across transitory and chronic

health shocks.

1



Table 1. Robustness of Structural Parameters to Modeling Assumptions

Primary Model Flexible γ(·) Correlations ρ

Panel A: Initial Beliefs
µp0 Prior Mean 1.433 1.671 1.418

[0.805, 2.062] [1.043, 2.299] [0.537, 2.299]
σ2
p0

Prior Variance 2.389 2.170 2.369
[2.129, 2.649] [1.910, 2.430] [1.735, 3.003]

ρ Corr(λTR, λCH) — — -0.056
— — [-0.062, -0.050]

Panel B: Learning from Preventive Care Investments
µs Signal Mean 0.023 0.023 0.023

σ2
s Signal Variance 0.982 0.914 1.282

[0.881, 1.082] [0.814, 1.015] [1.180, 1.384]
γ Average Prevention Returns 0.705 0.724 0.705

[0.648, 0.762] [0.699, 0.750] [0.680, 0.730]

Panel C: Learning from Major Health Events
π1 Family Chronic Event 9.152 11.720 11.401

[8.935, 9.360] [11.511, 11.928] [11.202, 11.600]
π2 Own Acute Event 3.497 3.865 3.840

[3.167, 3.829] [3.533, 4.196] [2.388, 5.292]
π3 Family Acute Event 1.023 2.010 0.807

[0.979, 1.078] [1.960, 2.060] [0.609, 1.005]

Notes: Table presents estimated equilibrium parameters of the model estimated via GMM on
a sample of N = 387, 216 enrollees observed in 149, 938 households between 2006 and 2013. All
average parameters are expressed in terms of probabilities (%), while variances are expressed in
log-odds. Signal mean µs is not estimated via GMM, but rather through individual-level risk
predictions.
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C.2 Static Model with Plan Choice

In this section, I describe an alternative structural estimation to that proposed in Section

4 of the text. The static model presented here allows households to respond to new health

risk information, but also to respond to changes in spot prices of care (moral hazard) and

changes in risk aversion (salience effects). Additionally, this model incorporates a stage

where households choose their insurance plan. The results presented in this appendix are

qualitatively similar to those presented in the main text; hence, some estimation details and

results have been ommitted. Full details are available upon request.

Consider a household f comprised of individuals i ∈ If . Individuals belong to one of two

types—those without chronic illnesses and those with at least one chronic condition. I assume

state-dependent preferences, so that the utility of receiving medical care differs across these

types. Households and individuals are characterized by three main variables: individual

beliefs about health risks (pift), household risk aversion (ψft), and the distributions of their

health shocks (as discussed in the text).

Families make two choices during each period. First, families choose their insurance

coverage. Following this, both transient and chronic health shocks are realized, just as in

Section 4 of the main text.1. Finally, individuals choose their yearly health spending. These

choices are static, in the sense that both households choose plans and individuals make

spending decisions on the basis of the current period’s utility and type parameters only

(including their beliefs about health risks). The model is static, in the sense that household

decisions in period t do not affect outcomes in period t+ 1. I can therefore ignore forward-

looking behavior.2 However, individual and household type parameters—including beliefs

and risk aversion—are responsive to exogenous shocks, including major health events. These

parameters adjust at the end of each model period, following individual utilization choices.

I model the evolution of these parameters using a Bayesian framework.

C.2.1 Utilization Choice

After choosing a health plan j ∈ J and realizing health shocks (~λift,m
CH
ft ), individuals

choose spending on non-chronic medical care, m∗ift. Individuals then choose mift in order to

maximize their expected utility over states:

m∗ift ≡ argmaxmiftEU(mift; pift) = piftuift,C + (1− pift)uift,H, (4)

1Note that in this model, I restrict the demand elasticity parameter ω in my model to be homogeneous
across individuals and periods, as I am incorporating additional individual-level heterogeneity in underlying
health distributions.

2Households are, however, forward-looking within a period, as they anticipate second-stage outcomes as
part of their first-stage choices. See equation 8.
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where uit,C and uit,H represent individual utilities when diagnosed with a chronic illness and

when not diagnosed, respectively. Note that Equation 4 nests the case where an individual

has already been diagnosed with a chronic illness, in which case pift = 1. State-dependent

utility functions are similar to those described in the text: individuals without chronic

conditions face the typical utility function:

uift,H(mift;λift,m
CH
ft , j) = (mift − λift)−

1

2ω
(mift − λift)2 − cj(mift). (5)

Here, cj(mift) represents the OOP costs associated with spending mift, conditional on the

choice of plan j. Hence, individuals choose medical spending to approximately match their

acute health realization λift, accommodating the associated OOP costs of that spending.

On the other hand, individuals in the state of chronic illness face a utility function

that depends on both acute and chronic health shocks, with potentially differing preference

parameters. Their utility, which depends on the same model primitives as Equation 5, is

given by:

uift,C = (α1mift + α2m
CH
ft − λift)−

1

2ω
(α1mift + α2m

CH
ft − λift)2 − cj(mift). (6)

In this state, utility is derived from both chronic and non-chronic medical spending, each of

which is potentially valued at a different rate than non-chronic medical spending for healthy

individuals as indicated by the parameters (α1, α2).

Solving the expected-utility maximization problem is the same as discuss in the text:

m∗ift =
1

1 + pift(α1 − 1)

(
λift + ω(1 + pift(α1 − 1)− c′j(mift;m

CH
ft ))− piftα2m

CH
ft

)
. (7)

The interpretation of Equation 7 elucidates the key insights associated with this state-

dependent utility framework with separate chronic care costs. In this expansion of the model,

individuals choose to consume less non-chronic health care as chronic care costs increase in

value, either by increases in magnitude, marginal utility, or likelihood. Equation 7 also

highlights the ways that chronic care costs affect spending decisions through prices (moral

hazard).

C.2.2 Plan Choice

In the first stage of the model, households choose an insurance plan to maximize their ex-ante

expected utilities without knowing their realization of health shocks. This expected utility

depends on the distributions of both health shocks as well as a household risk aversion
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parameter, which depends flexibly on household demographics and is allowed to evolve over

time to capture the salience effects associated with health events, as discussed in Section

C.2.4. The household expected utility function for a given plan j is therefore:

Ufjt = −
∑
i∈If

[∫ ∫
1

ψft(xft)
exp{−ψft(xft)u∗ift} dFλidGmCH

]
−cj(mCH

ft )−πfj−η1fj,t−1, (8)

where u∗ift represents the optimal payoff to individual i in period t given the realization of

acute and chronic health states. In addition to each individual’s realized OOP costs for

non-chronic medical spending, households face OOP costs for chronic care represented by

cj(m
CH
ft ), plan premiums πj and perceived monetary costs η for switching plans.

C.2.3 Parameter Updating

After households and individuals have made their plan and spending choices, type parameters

evolve in response to health events. Of particular interest is the way that individuals update

their beliefs about their unknown transition probability (pift). Additionally, households

update their risk aversion parameters (ψft) according to an adaptive framework.

I model individual learning about health risks as a Bayesian updating process in response

to health events. In particular, I assume that initial beliefs depend on individual demograph-

ics, including age, sex, health risk scores, and the presence of any pre-existing conditions

within the household. Prior beliefs are based on a signal xif0, which is assumed to be nor-

mally distributed with mean and variance parameters (µpi0, σ
2
pi0); this signal is mapped into

a probability pif0 ∈ [0, 1] using the standard logistic function. The center of the distribution

µpi0 varies with individual demographics and is potentially correlated with other household

type parameters.

Major health events provide individuals with signals yift about the underlying distribu-

tion of pift, I likewise assume that these signals are normally distributed, so that the mean

and variance of an individual’s posterior distribution has a closed-form solution in each pe-

riod. I assume that households update their beliefs conditional on a health event occurring.

Once the individual begins evaluating their health risk beliefs (e.g., after a diagnosis has oc-

curred within the household), they do so in a completely standard way, including updating

beliefs in all following years without major health events.
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C.2.4 Estimation

The unit of observation is a family f comprised of a set of individuals If in year t. Each

family faces a choice of plans that varies at the firm-year-state level.3 Households are charac-

terized by their unobserved type variables {pift, λift, ψft}i∈If . I allow the initial parameters

(pif0, λift, ψf0) to be arbitrarily correlated, and link them to observable data by assuming

that they are drawn from a multivariate normal distribution which depends on observed

demographics:  pif0

µλif

log(ψf0)

 ∼ N

 βpX

p

βλX
λ

βψX
ψ

 ,
 σ2

p

σp,λ σ2
µ

σp,ψ σλ,ψ σ2
ψ


 . (9)

Covariates X include age, sex, health risk score, family size, and the presence of pre-existing

conditions in a household. In practice, I use individuals’ first year of data in Xp and Xλ

and within-individual averages in Xψ.

Individual beliefs evolve in response to signals about their health risks as discussed in

section C.2.3. I assume that these signals yift are normally distributed with variance σ2
π (to

be estimated) and a mean given by the logit regression:

yift = π11{chronic}f,−i + π21{acute}f,−i + π31{acute}f,i + π4xift, (10)

where chronic and acute indicate the occurrence of chronic or acute health events within a

household and xift is a variable for the number of years that have passed since the earliest

major health event in the family. Hence, π1 is the main parameter of interest, identifying

the effect of a household chronic diagnosis on individual beliefs, as in the main text.

Acute health shocks at the individual level are summarized by three parameters: (µλif , σ
2
λif , κif ).

Both σ2
λif and κif are estimated as a linear projection on individual covariates.

Finally, I allow family risk aversion ψft to evolve over time as discussed above. In

particular, ψft(xt) evolves linearly according to:

ψft = γ0ψf,t−1+γ1Postt+γ2
{

Postt ×mCH
f0

}
+γ3

{
Postt × cj(mCH

f0 )
}

+γ4
{

Postt × Hospf0
}

+ζft,

(11)

where mCH
f0 represents the billed spending associated with the diagnostic event, cj(m

CH
f0 )

the OOP spending of the diagnostic event, and Hospf0 indicates whether a hospitalization

occurred as part of the diagnosis. I assume that ζft ∼ N (0, σ2
ψ).

3I ignore plans that have less than five percent of the overall firm-year market share in my data to avoid
including executive health plans in employee choice sets.
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I denote the parameters of the model by θ. These parameters include the main parameters

of interest ~π and ~ψ, including the variances σ2
π and σ2

ψ. Additional parameters included in

the estimation are the utility parameters α1, α2, ω, and η; the five vectors of mean shifters

(βp, βψ, βλ, βσλ , βκ); seven variance and covariance parameters (σp, σµ, σψ, σκ, σp,ψ, σp,µ, σψ,µ);

and the variance of the idiosyncratic shock term σ2
ε , which scales the choice probabilities. I

assume that these idiosyncratic shocks follow the typical Type-1 Extreme Value distribution.

Based on θ and the data, I am able simulate values for pift, µλif , σλif , λift, and ψft.

I estimate the full static model using a maximum likelihood approach similar to Train

(2009) and Revelt and Train (1998), with the appropriate extension to a discrete/continuous

multi-stage choice model as discussed in Dubin and McFadden (1984). My estimation ap-

proach is similar to other models like mine, including Marone and Sabety (2021). I estimate

the parameter values θ that maximize the probability density of households’ observed total

healthcare spending conditional on their plan choices. The estimation is done in R version

4.0.3, following the best practices laid out in Conlon and Gortmaker (2020).

My model allows for individuals to have three type-specific dimensions of unobservable

heterogeneity, in addition to the typical Type 1 Extreme Value idiosyncratic shock (which

can be integrated out analytically): individual health states, individual beliefs about health

risks, and household risk aversion. I therefore must numerically integrate over the three

dimensions βft = (pit, µλ,i, ψft) ∈ θ. Given a guess of θ, I use Gaussian quadrature with 27

support points (three in each dimension) to simulate underlying consumer types, yielding

simulated points {βfts(θ)}s and weights Ws.

For each simulation draw s, I can then calculate the conditional density at individuals’

observed total healthcare spending and the probability of households’ observed plan choices.

C.2.5 Household Spending

Given data on realized choices mit, I construct the distribution of healthcare spending for

each individual-year implied by the model and guess of parameters θ. Based on underlying

consumer types βfts, I construct individual-level parameters for health states (µλ,i, σλ,i, κi)

based on the parameters βfts and the distributions outlined in Section 4.3.1 of the text.

The model predicts that given an acute-chronic health state (λit,m
CH
ft ), households choose

total healthcare spending m by trading off the benefit of healthcare utilization with its out-

of-pocket cost, as discussed above. Given that mCH
ft does not have individual parameters

to be estimated (as these values are drawn from an empirical distribution), inverting the

expression in equation 18 of the text yields the health state realization λits that would have

given rise to observed spending mit given mCH
ft . Given that observed spending is truncated

from below at 0, there are two possibilities for the conditional pdf:
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fm(mit|cjt, βfts, θ) =

Φ
(

log(κi)−µλ,i
σλ,i

)
mit = 0

Φ′
(

log(λits)−µλ,i
σλ,i

)
mit > 0,

(12)

where Φ(·) is the standard normal cumulative distribution function. In practice, there are

iterations where the implied pdf is zero; hence, in order to rationalize the data for any

parameter guess, I use a convolution of fm with a uniform distribution over the range [-1e-

75, 1e-75], as done by Marone and Sabety (2021).

C.2.6 Plan Choices

I next calculate choice probabilities for each available health insurance plan. Given θ and

βfts, I numerically integrate over the joint distribution of acute and chronic health care

shocks using D = 10 support points in each dimension. The support points for the chronic

health care shocks are chosen uniformly across the empirical distribution with the empirical

pdf used in calculating the associated weights. For the acute health shocks, support points

are calculated over the lognormal distribution as:

λitsd = exp (µis + σisZd) + κis, (13)

where Zd is the appropriate Gaussian quadrature vector of points (with corresponding

weights Wd). The utility maximization framework discussed above (Equation 18 in the

text) is then used to calculate the optimal spending levels given individual and household

shocks and the underlying parameter pit. Expected utility for each support point is calcu-

lated as in equation 9 of the text and summed (with weights) over all 100 points.4 Choice

probabilities for a plan j are then given by the standard logit formula

Lftjs =
exp(Uftjs/σε)∑
i∈Jft exp(Uftis/σε)

. (14)

C.2.7 Likelihood Function

Based on the choice probabilities and conditional density functions for observed spending,

the likelihood function is approximated by

Lf =
J∑
j=1

dfjt

S∏
s=1

T∏
t=1

[fm(mit|cjt, βfts, θ)Lftjs]Ws , (15)

4In practice, to speed up estimation, I ignore points with associated weights smaller than 1e-5.
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where dfjt is an indicator variable equal to one if household f chose plan j at time t and

zero otherwise.

The log-likelihood function for family f is therefore:

`f = log(Lf ) =
J∑
j=1

dfjt

S∑
s=1

Ws

T∑
t=1

[log(fm(mit|cjt, βfts, θ)) + log(Lftjs)] , (16)

and the objective function F(θ), to be maximized, is the the sum of this log-likelihood over

all households:

F(θ) =
F∑
f=1

`f . (17)

C.2.8 Results

Table C.1 presents the estimated parameters, with additional parameters found below. I

consistently find strong effects on non-diagnosed beliefs associated with household chronic

diagnoses. New chronic diagnoses are associated with an average increase in an individual’s

belief of a major health event of 33 percentage points, an effect which is far larger than

those estimated for acute events for either the individual or their family members, which

are estimated to only increase risk beliefs by five and six percentage points, respectively.

These increases are persistent, with little evidence that risk beliefs decrease over time (the

estimated time trend coefficient is only one percentage point each year).

Table C.1 also presents parameters illustrating how the effects of new chronic illnesses

alter behaviors in other meaningful ways. Major health events—both acute and chronic—

are associated with strong salience effects that increase household risk aversion. On average,

experiencing a major health event increases the coefficient of household risk aversion by

0.61, a 34.9% increase over the pre-diagnosis average coefficient of 1.75.5 These effects are

stronger when the household event entails either a higher amount of total billed spending or

a hospitalization, suggesting that households respond differently to the intensity of an event.

5To put these numbers into context, I follow the results of Cohen et al. (2007) and consider the amount
$X that would make the average household in my sample indifferent between a sure payoff of $0 and an
equal-odds gamble between winning $100 and losing $X. Prior to a diagnosis, the average value of $X is
roughly $85.08; after diagnosis, this value changes to $80.85. These results are comparable with previous
estimates of household risk aversion for health insurance—however, as mentioned in Einav et al. (2013), the
coefficients from models incorporating both health and financial risk do not compare to those of models with
pure financial risk.
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Model 1 Model 2 Model 3

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Panel A: Dynamic Parameters
Belief Evolution
π1 Family Chronic Event 0.69 (0.002) 0.17 (0.002) 0.33 (0.002)
π2 Own Acute Event 0.07 (0.002) 0.02 (0.001) 0.05 (0.002)
π3 Family Acute Event 0.09 (0.002) 0.03 (0.001) 0.06 (0.002)
π4 Years since Event -0.01 (0.000) 0.002 (0.000) 0.01 (0.000)
σπ Error Variance 10.29 (0.000) 0.12 (0.005) 1.52 (0.018)

Risk Aversion Evolution
ψ0 Persistence, Year t− 1 – – – – 0.95 (0.025)
ψ1 Health Event (HE) – – – – 0.61 (0.015)
ψ2 HE × Year 0 Cost – – – – 0.19 (0.020)
ψ3 HE × Year 0 OOP – – – – -0.88 (0.024)
ψ4 HE × Hospitalization – – – – 1.51 (0.033)
σψ Error Variance – – – – 0.01 (0.016)

Panel B: Heterogeneity in Types
σ2
ε Idiosyncratic Shock 5.92 (1.006) 6.24 (0.109) 3.56 (0.085)
σ2
p Initial Beliefs 16.59 (0.410) 24.43 (0.003) 14.51 (0.001)
σ2
ψ Initial Risk Aversion 15.22 (0.289) 5.55 (0.005) 2.57 (0.005)
σ2
λ Acute Shocks – – 0.58 (0.004) 2.03 (0.001)

ρp,ψ -0.87 (0.360) -0.43 (0.002) -0.54 (0.002)
ρp,λ – – -0.91 (0.006) 0.38 (0.002)
ρψ,λ – – 0.12 (0.002) 0.09 (0.002)

Beliefs Evolve Yes Yes Yes
Acute Shock Heterogeneity Yes Yes
Risk Aversion Evolves Yes

Notes: This table presents estimates for selected parameters of the structural model of health choice. Belief
evolution parameters ~π are reported as marginal effects. Standard errors are derived from the analytical
Hessian of the likelihood function. Column 3 presents my primary estimates used in later calculations. All
models are estimated on an unbalanced panel of 179,044 households over eight years. Preference coefficients
are relative to thousands of dollars.

Table C.1. Estimated Structural Parameters of Interest
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C.2.9 Model Fit

I evaluate the fit of my estimated model at both the plan choice and spending stages. To

evaluate plan choices, I compare plan choices for households observed in the data with

those predicted by the model in Figure 1. Predicted choice probabilities are influenced by

premiums, inertia, and household expectations of their acute and chronic health shocks,

valued based on their level of risk aversion. At the level of household spending, I compare

observed household spending distributions to those predicted by the model. As spending

decisions are made after the realization of two random variables (acute and chronic health

shocks), I base the model predictions off of a single draw of these underlying variables. I

pool all individuals within a firm across years.

Figure 1. Predicted and Observed Insurance Plan and Health Care Spending Choices

(a) Insurance Plan Choices

0

10

20

30

1 2 3 4 5 6 7 8 9 10 11
Chosen Insurance Plan

Observed
Predicted

(b) Health Spending Choices
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Notes: Figures show overall match between estimated model predictions and observed household
choices, at both the plan choice (left) and spending (right) stages of the model. In the first panel,
market shares for each insurance plan offered to employees of the single largest firm are shown. All
years are pooled, so each observation is a household-year. The overall match rate is 82.2%. The sec-
ond panel plots distributions of predicted and observed household health care spending, conditional on
predicted/observed spending greater than zero (the observed rate of zero spending is 16.6% and the
predicted rate is 13.2%). All years are pooled, so an observation is a household-year. Vertical lines
represent the mean of the respective distribution.

Figure 1 presents the results. The first panel shows the observed and predicted market

shares for enrollment in plans offered in the largest firm in my sample. Overall, predicted

shares are closely matched. The panel on the right presents observed and estimated spend-

ing conditional on a plan choice. Here, the model predicts slightly higher levels of billed

spending than are typically observed, with a difference of about $1,000 between the means

of the two distributions. The model appropriately predicts the extensive margin of spending,

appropriately capturing the fraction of individuals who choose zero medical spending in a

given year.
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Figure 2 illustrates the model’s predictions surrounding behavior following new chronic

diagnoses in a household as recentered time series graphs, similar to those reported in the

text. In my model, household diagnoses are associated large increases in OOP spending

(about 20%, a difference which is statistically indistinguishable from the 10% reported ear-

lier). Importantly, I predict large accompanying changes in individual health risk beliefs

following a new chronic diagnosis in the family. The horizontal green line in the Panel (b)

of Figure 2 depicts the pooled average risk of diagnosis within my sample, which is roughly

2.5%. Prior to health events, individuals tend to underweight their health risks by about

58%; however, following a diagnosis, individuals move to over-weighting their risks by over

six times the true in-sample rates of diagnosis. Instead, these households make choices as

though they perceived their risk of a chronic diagnosis to be greater than one in ten.

Figure 2. Model Predictions: Non-Diagnosed Spending and Beliefs Around a New Diagnosis

(a) Effect on Non-Diagnosed OOP Spending
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(b) Effect on Health Risk Beliefs
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Notes: Figures show recentered time series for model predictions of spending and beliefs for non-
diagnosed household members who have experienced a diagnosis with a new chronic illness in the
household. The first panel illustrates percentage changes in the inverse hyperbolic sine of OOP spend-
ing, measured in 2020 USD. The second panel illustrates estimated changes in predicted beliefs, averaged
over draws from individual posterior distributions. The green horizontal line in Panel (b) illustrates
the average in-sample rate of diagnosis with a new chronic condition, roughly 2.5%.
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