An Ounce of Prevention or a Pound of Cure? The Value of Health Risk Information

Alex Hoagland, Boston University

November 30, 2021

Social networks in health: the apple doesn't fall far

• Family & social networks provide important health information

- Expectations of own health risks
- Relative value of medical care and how to get it

Social networks in health: the apple doesn't fall far

- Family & social networks provide important health information
 - Expectations of own health risks
 - Relative value of medical care and how to get it
- How individual experiences \Rightarrow family behaviors is vital to policies:
 - Incentivizing take-up of high-value services
 - Curbing use of low-value services

Social networks in health: the apple doesn't fall far

- Family & social networks provide important health information
 - Expectations of own health risks
 - Relative value of medical care and how to get it
- How **individual experiences** ⇒ **family behaviors** is vital to policies:
 - Incentivizing take-up of high-value services
 - Curbing use of low-value services

I show family health events cause spillovers but do not improve welfare

- Individuals (over-) update beliefs about risks
- Leads to increased utilization (high- & low-value)
- Welfare gains are dampened by **misinterpretation**

'Get the vaccine:' Oregon man pleads as 23-year-old wife fights for her life

'Get the vaccine:' Oregon man pleads as 23-year-old wife fights for her life

COVID-19: Family of anti-vaxxer nightclub boss who died from coronavirus urges people to get the jab

'Get the vaccine:' Oregon man pleads as 23-year-old wife fights for her life

COVID-19: Family of anti-vaxxer nightclub boss who died from coronavirus urges people to get the jab

Family of San Diego COVID-19 victim makes emotional vaccine plea

Health events provide type information to a household

- New chronic diagnoses from 2006–2018 (ex: Type 1 Diabetes)
- Observed changes in utilization ⇒ measure/value spillovers

Health events provide type information to a household

- New chronic diagnoses from 2006–2018 (ex: Type 1 Diabetes)
- Observed changes in utilization ⇒ measure/value spillovers

Households appear highly responsive to new health information

- New diagnoses prompt spending increases of 10%
- Effects are persistent but affect services of varying quality

Health events provide type information to a household

- New chronic diagnoses from 2006–2018 (ex: Type 1 Diabetes)
- Observed changes in utilization ⇒ measure/value spillovers

Households appear highly responsive to new health information

- New diagnoses prompt spending increases of 10%
- Effects are persistent but affect services of varying quality

Highlight role of information interpretation relative to other channels

- Induced demand ("moral hazard"): ↓ spot prices of care
- 2 Salience: ↑ marginal utility of seeking care
- 3 Health system literacy: ↓ indirect costs of care

Key Questions & Contributions

1 How does health information change health choices?

- Highlights a new channel of informational spillovers
- Results paint a picture of risk reassessment
- Diagnoses increase use of high- and low-value services

Key Questions & Contributions

How does health information change health choices?

- Highlights a new channel of informational spillovers
- Results paint a picture of risk reassessment
- Diagnoses increase use of high- and low-value services
- 2 What is the value of new health information?
 - Novel structural model of health choices/learning
 - Monetize value of new info.: welfare penalties of ~\$2,750/yr
 - Ex-post belief overweighting limits welfare gains

Key Questions & Contributions

1 How does health information change health choices?

- Highlights a new channel of informational spillovers
- Results paint a picture of risk reassessment
- Diagnoses increase use of high- and low-value services
- 2 What is the value of new health information?
 - Novel structural model of health choices/learning
 - Monetize value of new info.: welfare penalties of ~\$2,750/yr
 - Ex-post belief overweighting limits welfare gains
- 3 Why does over-responsiveness to health information matter?
 - Limiting belief responsiveness \Rightarrow welfare gains \sim \$2,027 annually
 - Returns further improved by targeting information

OUTLINE

- Data: Major health events taking place within a household
- 2 Reduced-Form Evidence: Informational spillovers and mechanisms
- 3 Structural Model: Quantifying value of health information
- 4 Counterfactual Scenarios: The role of over-reaction in welfare
- **5** Conclusion: Discussion & policy importance

Data: Truven Commercial Claims and Encounters Marketscan, 2006–2018

- Detailed claims for households in group ESI plans
- Typically, families with middle-aged parents + young children
- 8 firms with consistent plan identifiers (N = 353,403 families)

Data: Truven Commercial Claims and Encounters Marketscan, 2006–2018

- Detailed claims for households in group ESI plans
- Typically, families with middle-aged parents + young children
- 8 firms with consistent plan identifiers (*N* = 353,403 families)

Key Variables:

- Health events based on Hierarchical Condition Categories
 - Generic set of conditions that alter risk, spending, & utilization
 - Limited to common non-pregnancy conditions
- Main outcomes:
 - Health spending/utilization: billed and out-of-pocket (OOP)
 - Health insurance plan choice
 - Use of preventive and low-value care

	Full Sample	Plan-Identified Sample		
Family size	3.00	3.01		
Employee age	45.01	44.36		
Total medical spending	\$2,504.41 [\$679.75]	\$2,454.88 [\$624.16]		
OOP medical spending	\$443.07 [\$109.66]	\$337.98 [\$80.33]		
% with new chronic diagnosis Chronic condition costs:	6.32	5.21		
OOP, diagnosis year	\$1,082.05 [\$464.69]	\$854.62 [\$329.90]		
OOP, future years	\$983.03 [\$521.39]	\$683.60 [\$446.69]		
Years	2006–2018	2006–2013		
Nindividuals	1,087,353	555,733		

Notes: Medians in brackets. Spending in 2020 USD.

The Value of Health Risk Information

I use multiple firms to leverage variation in plan characteristics

• Useful to separate risk *preferences* from risk *beliefs*

	Firm								
	А	В	С	D	Е	F	G	Н	
# of plans offered	3.50	2.50	3.00	2.00	2.00	2.57	2.75	3.00	
Cost/Enrollee	12.70	9.82	9.73	10.16	9.34	8.93	9.13	11.53	
HH deductible	0.36	0.39	2.13	0.97	0.95	0.71	0.89	0.48	
% o-deductible	64.29	46.67	0.00	0.00	0.00	22.22	31.82	38.89	
HH OOP max.	3.47	4.55	5.05	5.92	4.32	4.11	5.15	3.92	
HHI of all plans	0.43	0.60	0.40	0.56	0.86	0.61	0.64	0.44	

Notes: Averages are pooled across all plans and years in a given firm. Prices in \$1,000s.

Methodology

REDUCED-FORM EVIDENCE

I estimate the effects of new chronic diagnoses using a **two-way fixed-effects (TWFE)** approach:

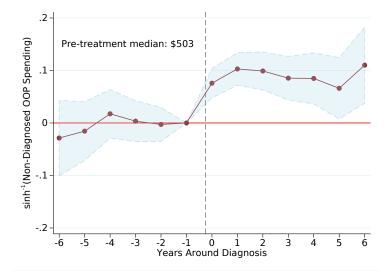
$$\sinh^{-1}(y_{ft}) = \alpha_f + \tau_t + \sum_{k=-T}^T \gamma_k \mathbb{1} \{t - E_{ft} = k\} + \epsilon_{ft}.$$

I estimate the effects of new chronic diagnoses using a **two-way fixed-effects (TWFE)** approach:

$$\sinh^{-1}(y_{ft}) = \alpha_f + \tau_t + \sum_{k=-T}^T \gamma_k \mathbb{1}\left\{t - E_{ft} = k\right\} + \epsilon_{ft}.$$

- Relative to year prior to event
- Coefficients roughly interpretable as percentage changes
- Standard errors are clustered at household level
- Results are robust to standard TWFE concerns

Household Chronic Diagnoses ↑ (Non-Diagnosed) Spending



Households also increase general takeup of wellness visits Details

- Generally considered high-value care (Tong et al., 2021)
- 1.5pp more likely to use wellness visit (from 92%)
- Increased (billed) spending on prevention of ~10% (\$50) annually

Households also increase general takeup of wellness visits Details

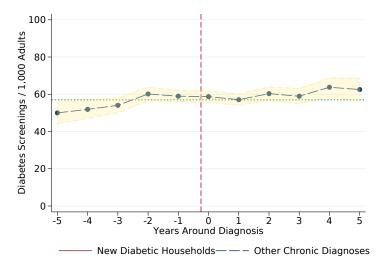
- Generally considered high-value care (Tong et al., 2021)
- 1.5pp more likely to use wellness visit (from 92%)
- Increased (billed) spending on prevention of ~10% (\$50) annually

More interesting, households seek out **disease-specific prevention**:

- Diagnoses provide targeted risk signals (e.g., diabetes diagnoses)
- Preventive responses to risk information should be selective

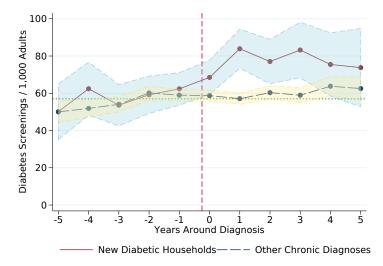
Diabetes Screening Responses Following Health Events

Selective use of preventive services is visible even in raw data



Diabetes Screening Responses Following Health Events

Selective use of preventive services is visible even in raw data



For causal analysis, I estimate a triple differences approach:

 $\begin{aligned} & \textit{Pr}(\textit{Screening})_{\textit{ftd}} = \beta_{\textit{DD}}(\textit{post}_t \times \textit{chronic}_f) \\ & + \beta_{\textit{DDD}}(\textit{post}_t \times \textit{chronic}_f \times \mathbb{1}\left\{\textit{chronic}_f = \textit{d}\right\}) \\ & + \alpha_f + \tau_t + \varepsilon_{\textit{ftd}} \end{aligned}$

For causal analysis, I estimate a triple differences approach:

For causal analysis, I estimate a triple differences approach:

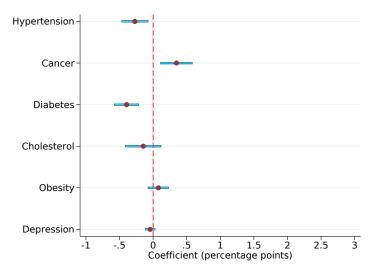
$$Pr(Screening)_{ftd} = \beta_{DD}(post_t \times chronic_f) + \beta_{DDD}(post_t \times chronic_f \times 1 \{chronic_f = d\}) + \alpha_f + \tau_t + \varepsilon_{ftd}$$

I use this approach for various **diagnoses** \Rightarrow **screenings**:

- 1 Any chronic diagnosis \rightarrow new hypertension diagnoses
- 2 Diabetes diagnoses \rightarrow diabetes screenings
- 3 Diabetes diagnoses \rightarrow cholesterol screenings
- 4 Cancer diagnoses \rightarrow cancer screenings
- I also include placebo regressions to highlight role of *information*:
 - 5 Diabetes diagnoses \rightarrow obesity diagnoses
 - 6 Mental health diagnoses \rightarrow depression screenings

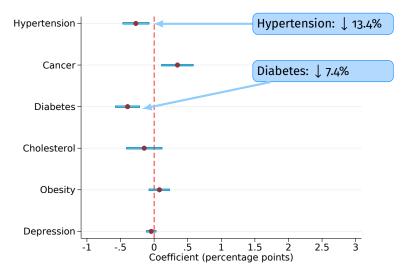
Difference-in-Difference (β_{DD}): Effect of Any Diagnosis

Screening decisions respond little to general health events:



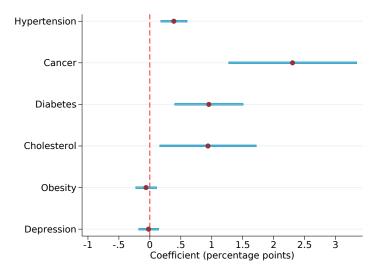
Difference-in-Difference (β_{DD}): Effect of Any Diagnosis

Screening decisions respond little to general health events:



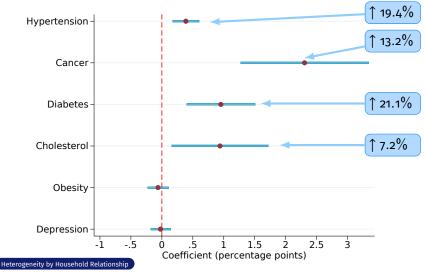
Triple Difference (β_{DDD}): Effect of Specific Diagnosis

Specific health events trigger specific screenings:



Triple Difference (β_{DDD}): Effect of Specific Diagnosis

Specific health events trigger specific screenings:



The Value of Health Risk Information

Do ex-post choices look better?

Examine **spending** on low-value services:

- Health services identified as "low-return"
- Based on recommendations of Choosing Wisely initiative and other physician specialty organizations (Bhatia et al., 2015; Wolfson et al., 2014)

Examine **spending** on low-value services:

- Health services identified as "low-return"
- Based on recommendations of Choosing Wisely initiative and other physician specialty organizations (Bhatia et al., 2015; Wolfson et al., 2014)

Population	Pediatric	Adult			
Service Category	All	Drugs	Imaging	Screening	Surgery
Post _t × Diagnosis _f	0.05* (0.02)	-0.01 (0.00)	0.03*** (0.01)	0.10*** (0.01)	-0.10*** (0.01)
	0.35	0.31	0.29	0.33	0.38

Notes: N=1,538,161. Standard errors clustered at the household level.

* p < 0.05, ** p < 0.01, *** p < 0.001.

Table. Estimated Effects of Chronic Illness on Low-Value Care Utilization

MECHANISMS

New diagnoses may do more than just update risk beliefs:

1 Moral Hazard/Induced Demand Effects:

- Family member's maintenance costs associated with condition contribute to household deductible/OOP max
- spot prices of care for rest of household

New diagnoses may do more than just update risk beliefs:

1 Moral Hazard/Induced Demand Effects:

- Family member's maintenance costs associated with condition contribute to household deductible/OOP max
- spot prices of care for rest of household

2 Salience Effects:

- Health trauma may increase attention to one's overall health
- ↑ marginal utility of seeking care

New diagnoses may do more than just update risk beliefs:

1 Moral Hazard/Induced Demand Effects:

- Family member's maintenance costs associated with condition contribute to household deductible/OOP max
- spot prices of care for rest of household

2 Salience Effects:

- Health trauma may increase attention to one's overall health
- ↑ marginal utility of seeking care

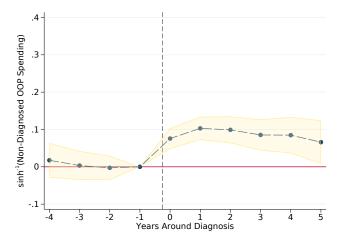
3 Health System Literacy Effects:

- Diagnoses may improve knowledge of service availability/access
- indirect costs of care

Excluding Alternative Responses: Moral Hazard

A natural question here is: "Isn't this just a price response?"

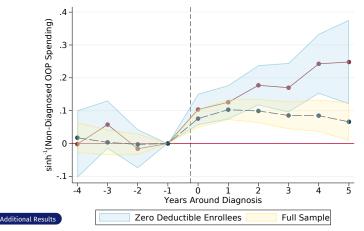
1. Responses are stable over time



Excluding Alternative Responses: Moral Hazard

A natural question here is: "Isn't this just a price response?"

- 1. Responses are stable over time
- 2. Responses are mirrored for those with fewest financial incentives

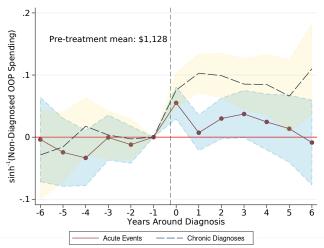


The Value of Health Risk Information

Excluding Alternative Responses: Salience Effects

After any traumatic health event, families may reassess care value

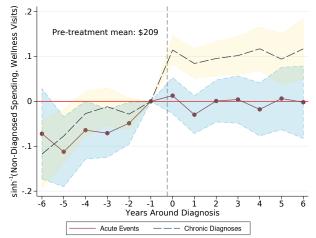
1. Responses more pronounced for chronic events than acute ones



Excluding Alternative Responses: Salience Effects

After any traumatic health event, families may reassess care value

- 1. Responses more pronounced for chronic events than acute ones
- 2. This is even more apparent when considering preventive utilization



The Value of Health Risk Information

Excluding Alternative Responses: Learning about Health Care

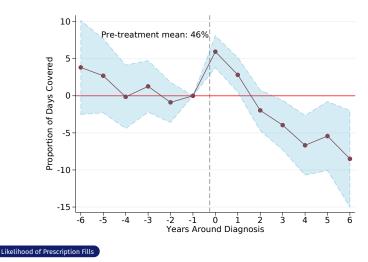
Might households be learning about health systems instead of risk?

I examine impacts on adherence to prescribed preventive drugs

Excluding Alternative Responses: Learning about Health Care

Might households be learning about health systems instead of risk?

Health events spur (short-lived) re-adherence



The Value of Health Risk Information

STRUCTURAL MODEL

Two-stage choice model of consumer demand for health care

(Cardon & Hendel, 2001; Einav et al., 2013; Marone & Sabety, 2021)

1 Households choose health plans to maximize expected utility

Two-stage choice model of consumer demand for health care

- Households choose health plans to maximize expected utility
- 2 Individuals receive health shocks (acute and chronic)

Two-stage choice model of consumer demand for health care

- Households choose health plans to maximize expected utility
- 2 Individuals receive health shocks (acute and chronic)
- 3 Individuals choose health spending, trading off wealth and health

Two-stage choice model of consumer demand for health care

- Households choose health plans to maximize expected utility
- Individuals receive health shocks (acute and chronic)
- 3 Individuals choose health spending, trading off wealth and health
- Individuals update beliefs about probability of medical events

Two-stage choice model of consumer demand for health care

- Households choose health plans to maximize expected utility
- Individuals receive health shocks (acute and chronic)
- 3 Individuals choose health spending, trading off wealth and health
- Individuals update beliefs about probability of medical events

Probabilities of diagnosis with a chronic illness, p_{ift}

- Probabilities of diagnosis with a chronic illness, p_{ift}
- **2** Distributions of acute health shocks $\lambda_{ift} \sim F(\mu_{\lambda}, \sigma_{\lambda}, \kappa_{\lambda})$
 - Shifted lognormal w/ mean μ_{λ} , variance σ_{λ} , and shift κ_{λ}

- Probabilities of diagnosis with a chronic illness, p_{ift}
- **2** Distributions of acute health shocks $\lambda_{ift} \sim F(\mu_{\lambda}, \sigma_{\lambda}, \kappa_{\lambda})$
 - Shifted lognormal w/ mean μ_{λ} , variance σ_{λ} , and shift κ_{λ}
- 3 Distribution of chronic care costs m_{ft}^{CH}

- Probabilities of diagnosis with a chronic illness, p_{ift}
- **2** Distributions of acute health shocks $\lambda_{ift} \sim F(\mu_{\lambda}, \sigma_{\lambda}, \kappa_{\lambda})$
 - Shifted lognormal w/ mean μ_{λ} , variance σ_{λ} , and shift κ_{λ}
- 3 Distribution of chronic care costs m^{CH}_{ff}
- **4** Risk aversion ψ_{ft} (hence, marginal utilities)

- Probabilities of diagnosis with a chronic illness, p_{ift}
- 2 Distributions of acute health shocks $\lambda_{ift} \sim F(\mu_{\lambda}, \sigma_{\lambda}, \kappa_{\lambda})$
 - Shifted lognormal w/ mean μ_{λ} , variance σ_{λ} , and shift κ_{λ}
- 3 Distribution of chronic care costs m_{fr}^{CH}
- 4 Risk aversion ψ_{ft} (hence, marginal utilities)

Health events affect:

- All individual beliefs {p_{ift}}_{i∈I_f}
- Household risk aversion ψ_{ft}
- *de facto* care prices (moral hazard)

After choosing a plan $j \in \mathcal{J}$ and realizing health shocks $\{m_{ft}^{CH}, \lambda_{ift}\}_{I_f}$, households choose **medical spending** that maximizes expected utility:

$$m_{ift}^* \equiv \operatorname{argmax}_{m_{ift}} \mathsf{EU}(m_{ift}; \lambda_{ift}, m_{ft}^{\mathsf{CH}}, j) = p_{ift}u_{ift,\mathsf{CH}} + (1 - p_{ift})u_{ift,\mathsf{H}}$$

After choosing a plan $j \in \mathcal{J}$ and realizing health shocks $\{m_{ft}^{CH}, \lambda_{ift}\}_{I_f}$, households choose **medical spending** that maximizes expected utility:

$$m_{ift}^* \equiv \operatorname{argmax}_{m_{ift}} \mathrm{EU}(m_{ift}; \lambda_{ift}, m_{ft}^{\mathrm{CH}}, j) = p_{ift} u_{ift, \mathrm{CH}} + (1 - p_{ift}) u_{ift, \mathrm{H}}$$

where

$$u_{ift,H} = \left[(m_{ift} - \lambda_{ift}) - \frac{1}{2\omega} (m_{ift} - \lambda_{ift})^2 \right] - c_j(m_{ift})$$

After choosing a plan $j \in \mathcal{J}$ and realizing health shocks $\{m_{ft}^{CH}, \lambda_{ift}\}_{I_f}$, households choose **medical spending** that maximizes expected utility:

$$m_{ift}^* \equiv \operatorname{argmax}_{m_{ift}} \mathsf{EU}(m_{ift}; \lambda_{ift}, m_{ft}^{\mathsf{CH}}, j) = p_{ift} u_{ift,\mathsf{CH}} + (1 - p_{ift}) u_{ift,\mathsf{H}}$$

where

$$u_{ift,H} = \left[(m_{ift} - \lambda_{ift}) - \frac{1}{2\omega} (m_{ift} - \lambda_{ift})^2 \right] - c_j(m_{ift})$$

and

$$u_{ift,CH} = \left[\left(\alpha_{1f} m_{ift} + \alpha_{2f} m_{ft}^{CH} - \lambda_{ift} \right) - \frac{1}{2\omega} \left(\alpha_{1f} m_{ift} + \alpha_{2f} m_{ft}^{CH} - \lambda_{ift} \right)^2 \right] - c_j (m_{ift})$$

Solving the Utility Maximization Problem

Families choose plans with uncertain health states:

$$U_{fjt} = -\sum_{i \in I_f} \left[\int \int \frac{1}{\psi_{ft}(x_{ft})} \exp\{-\psi_{ft}(x_{ft})u_{ift}^*\} dF_{\lambda_i} dG_{m^{CH}} \right]$$
$$-c_j(m_{ft}^{CH}) - \pi_{fj} - \eta \mathbb{1}_{fj,t-1}$$

Families choose plans with uncertain health states:

$$U_{fjt} = -\sum_{i \in I_f} \left[\int \int \frac{1}{\psi_{ft}(x_{ft})} \exp\{-\psi_{ft}(x_{ft})u_{ift}^*\} dF_{\lambda_i} dG_{m^{CH}} \right]$$
$$-c_j(m_{ft}^{CH}) - \pi_{fj} - \eta \mathbb{1}_{fj,t-1}$$

- Households maximize sum of individual utilities
- Chronic care prices are attributed "first" (moral hazard)
- Changes to ψ_{ft} affect $\frac{\partial u_{fit}}{\partial m_{ift}^*}$ (salience effects)

The Value of Health Risk Information

Major health events provide households with information about risks p_{ift}

- Model as Bayesian learning
- Prior beliefs and signals assumed to be normally distributed
- **Posteriors** are thus given by:

$$\sigma_{pi,t+1}^{2} = \frac{\tilde{\sigma}_{ift}^{2}\sigma_{pio}^{2}}{\tilde{\sigma}_{ift}^{2} + s_{ift}\sigma_{pio}^{2}}$$
$$\mu_{pi,t+1} = \frac{\tilde{\sigma}_{ift}^{2}\mu_{pit} + \sigma_{pit}^{2}\tilde{\mu}_{ift}}{\tilde{\sigma}_{ift}^{2} + \sigma_{pit}^{2}}$$

Major health events provide households with information about risks p_{ift}

- Model as Bayesian learning
- Prior beliefs and signals assumed to be normally distributed
- **Posteriors** are thus given by:

$$\sigma_{pi,t+1}^{2} = \frac{\tilde{\sigma}_{ift}^{2}\sigma_{pio}^{2}}{\tilde{\sigma}_{ift}^{2} + s_{ift}\sigma_{pio}^{2}}$$
$$\mu_{pi,t+1} = \frac{\tilde{\sigma}_{ift}^{2}\mu_{pit} + \sigma_{pit}^{2}\tilde{\mu}_{ift}}{\tilde{\sigma}_{ift}^{2} + \sigma_{pit}^{2}}$$

• Updating is "triggered" by a **signal** parameterized by:

$$y_{ift} = \pi_1 \mathbb{1}\{\text{chronic}\}_{f,-i} + \pi_2 \mathbb{1}\{\text{acute}\}_{f,-i} + \pi_3 \mathbb{1}\{\text{acute}\}_{f,i} + \pi_4 x_{ift}$$

Major health events also change household **risk aversion**, ψ_{ft}

• Households update ψ_{ft} at the end of each period:

$$\psi_{ft} = \gamma_{0}\psi_{f,t-1} + \gamma_{1}\left\{\text{Post}_{t} \times m_{f0}^{\text{CH}}\right\} + \gamma_{2}\left\{\text{Post}_{t} \times c_{j}(m_{f0}^{\text{CH}})\right\} + \gamma_{3}\left\{\text{Post}_{t} \times \text{Hosp}_{f0}\right\}$$

- γ₀ measures persistence of risk aversion across years
- Impact of health event is allowed to vary by
 - Overall cost of event (billed spending)
 - OOP spending on event
 - Whether a hospitalization occurred

I identify **informational effects** separate from other channels using multiple sources of **variation**:

1 Moral Hazard Effects leverage cross-illness variation in:

- Diagnostic cost
- Maintenance cost
- Plan characteristics

2 Salience Effects rely on plan choice set variation (Ericson et al., 2020)

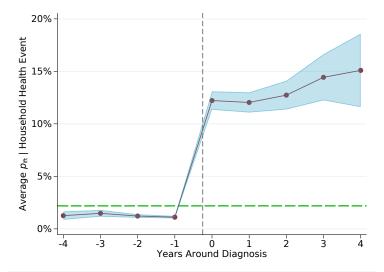
- Risk aversion drives plan choices in model, not spending
- Repeated choices
- Circumstances of major medical events

Estimation Overview

STRUCTURAL RESULTS

Finding 1: Large Belief Updating

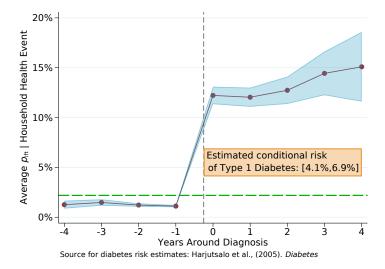
Major health events are associated with large increases in risk beliefs:



The Value of Health Risk Information

Finding 1: Large Belief Updating

Major health events are associated with large increases in risk beliefs:



		Preferred Specification		
		Estimate	Std. Err.	
Pan	Panel A: Dynamic Parameters			
Beli	ef Evolution			
π_1	Family Chronic Event	0.33	(0.002)	
π_2	Own Acute Event	0.05	(0.002)	
π_3	Family Acute Event	0.06	(0.002)	
π_4	Years since Event	0.01	(0.000)	
σ_{π}	Error Variance	1.52	(0.018)	

Notes: Average marginal effects on posterior means shown.

- Chronic events generate strong changes to risk beliefs
- Acute events generate weaker responses
- Effects are persistent

		Preferred Specification	
		Estimate	Std. Err.
Pane	el A: Dynamic Parameters		
Risk	Aversion Evolution		
ψ_{0}	Persistence, Year t – 1	0.95	(0.025)
ψ_1	Health Event (HE)	0.61	(0.015)
ψ_2	${ m HE} imes{ m Year}$ o Cost	0.19	(0.020)
ψ_3	${ m HE} imes { m Year} m o OOP$	-0.88	(0.024)
ψ_4	${ m HE} imes{ m Hospitalization}$	1.51	(0.033)
σ_{ψ}	Error Variance	0.01	(0.016)

- Health events **† risk aversion** by 34.9%
- Households respond to event intensity

Model Fit & Additional Parameters

The Value of Health Risk Information

Measure value of information as marginal willingness to pay

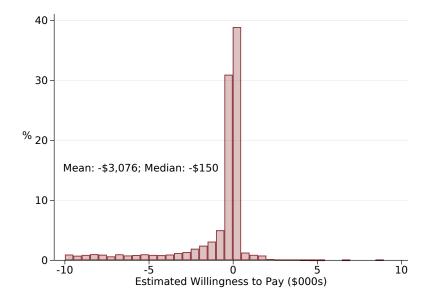
• Welfare metric: certainty equivalent

$$CE_{fjt} = -\psi_{ft}^{-1}\log(-U_{fjt})$$

• Report changes in *CE_{fit}* relative to benchmark world:

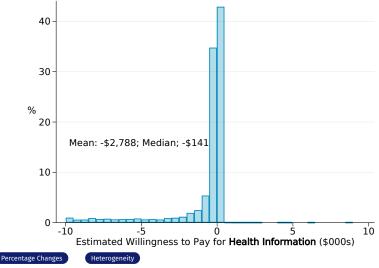
 $\Delta(CE) = CE_{fit}(\text{event occurs}) - CE_{fit}(\text{no event occurs})$

Major Health Events Generate -\$3,076 Loss



New Health Information Generates -\$2,788 Loss

90% of welfare changes are attributable to effect of new information



COUNTERFACTUAL SCENARIOS

Welfare losses arise from large changes to risk beliefs

- Households overweight health risks by 6x
- High risk beliefs \Rightarrow propagation of spending + low-value service use

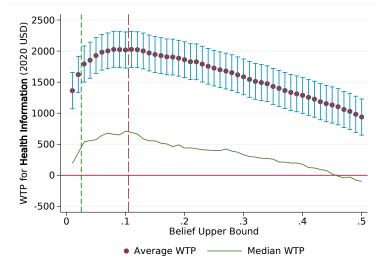
Welfare losses arise from large changes to risk beliefs

- Households overweight health risks by 6x
- High risk beliefs \Rightarrow propagation of spending + low-value service use

What is the value of information when "correctly" interpreted?

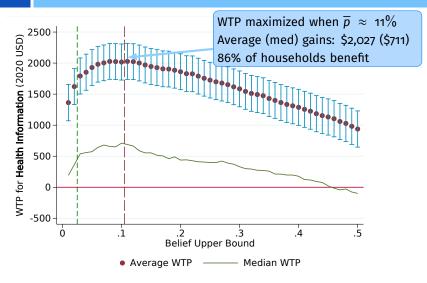
- Place arbitrary upper bounds on p_{if,t>0}
- 2 Reevaluate marginal WTP with limits
- 3 Ignore moral hazard & salience effects

Bounding Belief Responsiveness Improves Welfare



Notes: Green dashed line indicates average in-sample rate of diagnosis.

Bounding Belief Responsiveness Improves Welfare



Notes: Green dashed line indicates average in-sample rate of diagnosis.

Policy revealing info. must balance heterogeneous returns: Full revelation may not be optimal when:

- Revelation is costly
- 2 Revelation disrupts insurance markets (Posey & Thistle, 2021)
- 3 Revelation is personally sub-optimal (Oster et al., 2013)

Policy revealing info. must balance heterogeneous returns: Full revelation may not be optimal when:

- Revelation is costly
- 2 Revelation disrupts insurance markets (Posey & Thistle, 2021)
- 3 Revelation is personally sub-optimal (Oster et al., 2013)

What is the value of transmitting health risks?

For example: COVID-19 antibody screenings

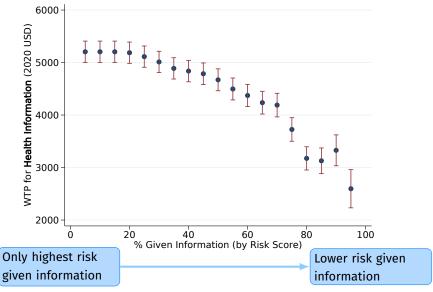
Policy revealing info. must balance heterogeneous returns: Full revelation may not be optimal when:

- Revelation is costly
- 2 Revelation disrupts insurance markets (Posey & Thistle, 2021)
- 3 Revelation is personally sub-optimal (Oster et al., 2013)

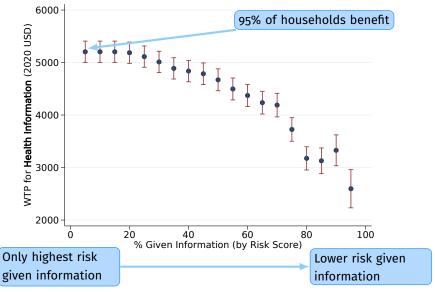
What is the value of transmitting health risks?

- For example: COVID-19 antibody screenings
- **1** Simulate "revealing" health information to **control group**
- 2 At time *t*, individuals are given signal of predicted risk \hat{p}_{if}
- **3** Assume full responsiveness $(p_{if,t>0} = \hat{p}_{if})$

Targeting Information Revelation Improves Welfare



Targeting Information Revelation Improves Welfare



CONCLUSION

Social networks provide highly relevant experiences for individuals

- Observing family health events ⇒ to reassessment of risks
- 2 Volatile reassessments ⇒ **over-reactions** and welfare penalties
- **3** Limiting **responsiveness** can \uparrow social value of health information

This analysis can be extended in several meaningful ways:

- 1 Endogenize chronic care health costs
- 2 Consider health production and liquidity constraints in modeling
- **3** Overlap between chronic conditions and job lock

AN OUNCE OF PREVENTION OR A POUND OF CURE? THE VALUE OF HEALTH RISK INFORMATION

Alex Hoagland Boston University

Additional Comments? alcobe@bu.edu Website: alex-hoagland.github.io

References (1/3)

- Abaluck & Compiani (2020). A Method to Estimate Discrete Choice Models that is Robust to Consumer Search. *NBER WP*
- Abaluck & Gruber (2011). Choice Inconsistencies among the Elderly: Evidence from Plan Choice in the Medicare Part D Program. *AER*.
- Abaluck & Gruber (2016). Evolving Choice Inconsistencies in Choice of Prescription Drug Insurance. *AER*.
- Alalouf et al. (2019). What Difference Does a Diagnosis Make? Evidence from Marginal Patients. NBER WP
- Baicker et al. (2015). Behavioral Hazard in Health Insurance. QJE.
- Barseghyan et al. (2018). Estimating Risk Preferences in the Field. JEL
- Bhatia et al. (2015). Measuring the effect of Choosing Wisely: an integrated framework to assess campaign impact on low-value care. *BMJ Quality & Safety*
- Cardon & Hendel (2001). Asymmetric Information in Health Insurance: Evidence from the National Medical Expenditure Survey. *RAND*
- Chernew et al. (2008). Learning and the value of information: Evidence from health plan report cards. *J Econometrics*
- Choudhry et al. (2009). Measuring Concurrent Adherence to Multiple Related Medications. *Am J Managed Care*.
- de Chaisemartin & D'Haultfoeuille (2019). Two-way fixed effects estimators with heterogeneous treatment effects. *NBER WP*.

References (2/3)

- Einav et al. (2013). Selection on Moral Hazard in Health Insurance. AER.
- Enthoven (1980). Health Plan: The Only Practical Solution to the Soaring Cost of Medical Care.
- Ericson et al. (2020). Inferring Risk Perceptions and Preferences Using Choice from Insurance Menus: Theory and Evidence. *The Economic J.*
- Fadlon & Nielsen (2019). Family Health Behaviors. AER.
- Fuchs (2004). More Variation In Use Of Care, More Flat-Of-The-Curve Medicine. *Health Affairs*
- Gruber et al. (2020). Managing Intelligence: Skilled Experts and AI in Markets for Complex Products. *NBER WP*.
- Grubb (2015). Overconfident Consumers in the Marketplace. JEP
- Handel (2013). Adverse Selection and Inertia in Health Insurance Markets: When Nudging Hurts. *AER*.
- Handel & Kolstad (2015). Health Insurance for "Humans": Information Frictions, Plan Choice, and Consumer Welfare. *AER*.
- Handel & Kolstad (2017). Wearable Technologies and Health Behaviors: New Data and New Methods to Understand Population Health. *AER*.
- Harjutsalo, Podar, & Tuomilehto. (2005). Cumulative incidence of type 1 diabetes in 10,168 siblings of Finnish young-onset type 1 diabetic patients. *Diabetes*.

References (3/3)

- Iizuka et al. (2021). Estimating the Marginal Value of Health Signals. *NBER WP*.
- Jones et al. (2019). What do Workplace Wellness Programs do? Evidence from the Illinois Workplace Wellness Study. *QJE*.
- Kenkel (1991). Health Behavior, Health Knowledge, and Schooling. JPE.
- Ketcham et al. (2012). Sinking or swimming in Medicare Part D. AER.
- Krummel (2019). The Rise of Wearable Technology in Health Care. JNO
- Marone & Sabety (in press). Should there be vertical choice in health insurance markets? *AER*.
- Oster et al. (2013). Optimal Expectations and Limited Medical Testing: Evidence from Huntington Disease. *AER*.
- Sloan et al. The Smoking Puzzle: Information, Risk Perception, and Choice.
- Shafer et al. (2021).Trends in pediatric wellness visits with out-of-pocket costs before and after the Affordable Care Act. *JNO*.
- Song & Baicker (2019). Effect of a Workplace Wellness Program on Employee Health and Economic Outcomes: A Randomized Clinical Trial. JAMA.
- Sorensen (2006). Social learning and health plan choice. *RAND*.
- Train (2009). Discrete Choice Methods With Simulation.
- Wolfson et al. (2014). Engaging Physicians and Consumers in Conversations About Treatment Overuse and Waste: A Short History of the Choosing Wisely Campaign. *Academic Medicine*

Identifying Major Medical Events

Example: Asthma

Codes

345 Asthma 145.2 Mild intermittent asthma -> J45.20 uncomplicated -> 345.21 with (acute) exacerbation ■ 145.22 with status asthmaticus J45.3 Mild persistent asthma -> J45.30 uncomplicated -> 345.31 with (acute) exacerbation 145.32 with status asthmaticus 345.4 Moderate persistent asthma -> 345.40 uncomplicated -> 345.41 with (acute) exacerbation > 345.42 with status asthmaticus J45.5 Severe persistent asthma → J45.50 uncomplicated J45.51 with (acute) exacerbation 145.52 with status asthmaticus J45.9 Other and unspecified asthma → J45.90 Unspecified asthma ▶ 345,901 with (acute) exacerbation J45.902 with status asthmaticus ▶ J45.909 uncomplicated 145 99 Other asthma 345,990 Exercise induced bronchospasm J45,991 Cough variant asthma J45,998 Other asthma

Additional restrictions:

- Require 1+ year of data without diagnosis
- Require 1+ year of follow-up data

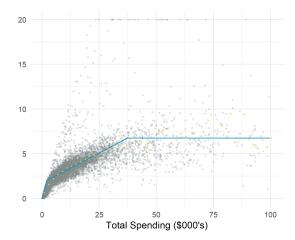
	Full Sample Households with chronic condition					
Total spending OOP spending	\$2,504.41 [\$679.75] \$443.07 [\$109.66]	\$3,378.17 [\$957.52] \$531.93 [\$151.18]				
Incidence of chronic illness (per 1,000 individuals)						
Asthma	2.93	96.08				
Breast/prostate cancer	0.35	11.58				
Diabetes w/ complications	0.39	12.72				
Diabetes w/o complications	1.18	38.57				
Fibrosis of lung	0.46	15.10				
MDD/biploar	1.62	52.76				
Multiple sclerosis	1.10	36.17				
Rheumatoid arthritis	0.17	5.70				
Seizures	0.30	9.82				
Nindividuals	1,087,353	165,694				

Back to Data

Inferring Plan Characteristics

- 1 Individual and household deductibles (Zhang et al., 2018)
- 2 Household coinsurance rates and out-of-pocket maxima (Marone &

Sabety, 2021)



The Value of Health Risk Information

Back to Data

I check my results against various estimation approaches:

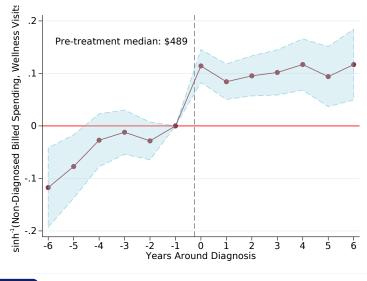
- 1 Recentered Time Series: Results are visible in the raw data
- 2 Standard DD: Coefficients validate dynamic treatment effects
 - Results do not depend on measurement of dependent variable
- 3 Robust TWFE Estimation:
 - Use large control group to separately identify dynamic treatment effects and time trends (Sun & Abraham, 2020)
 - Verify lack of negative weighting in my approach

(Goodman-Bacon et al., 2019)

Verify with robust estimators by Chaisemartin & D'Haultfoeuille, 2019 and Sant'Anna & Zhao, 2020

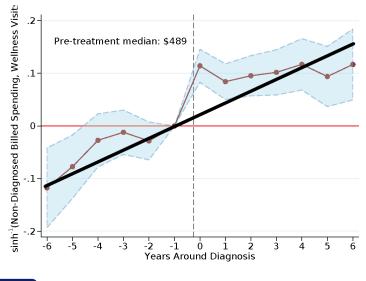
Back to Results

Observed Responses to Utilization of Preventive Care



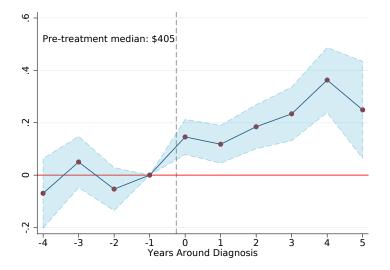
Back to Results

Time Trends in Utilization of Preventive Care

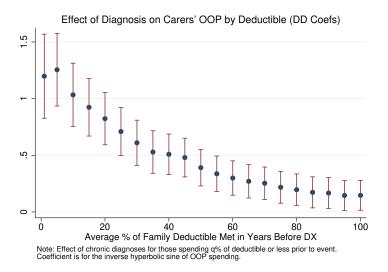


Back to Results

Takeup of Preventive Care Increases for those in o-Ded Plans



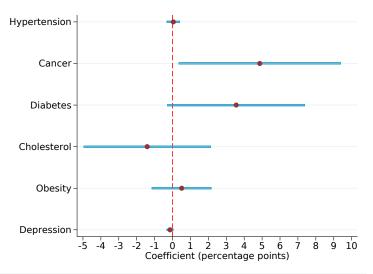
Spending Responses are Largest for Low-Spending Families



	Year O	Years 1–5 (average)
Any Billed Spending	1.54***	0.60***
	(0.08)	(0.13)
Any OOP Spending	2.62***	1.41***
	(0.11)	(0.18)
Any Outpatient Visits	2.20***	O.65 ^{***}
	(0.09)	(0.15)
Any Preventive Care	3.23***	0.90***
	(0.15)	(0.22)
Any Prescription Fills	4.7 4 ^{***}	2.45***
	(0.41)	(0.53)

Heterogeneity in Disease-Specific Responses

Additional placebo: effect of a child's diagnosis on parent's screening



Heterogeneity in Disease-Specific Responses

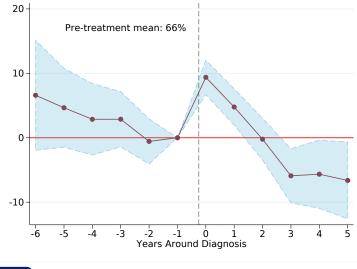
Screening	Hypertension	Cancer	Diabetes	Cholesterol
Diagnosis	Any Chronic	Cancer	<i>Type 2</i>	<i>Diabetes</i>
$Post_t \times Diagnosis_f \times Child_j$	0.39 ***	2.55 ***	-0.85 ***	-2.20 ***
	(0.03)	(0.43)	(0.21)	(0.29)
Post _t × Diagnosis _f × Parent _j	-0.34 ^{**}	-1.90	3.49 [*]	3.73
	(0.11)	(2.49)	(1.71)	(2.26)
$Post_t \times Diagnosis_f \times Spouse_j$	-0.74 ***	-3.33 ***	2.54 ***	5.15 ***
	(0.13)	(0.81)	(0.45)	(0.60)
$Post_t \times Diagnosis_f \times Sibling_j$	0.09	1.56	0.76	2.89
	(0.04)	(1.55)	(1.09)	(1.86)
Observations	4,039,602	3,671,064	3,680,725	3,680,725
Adjusted <i>R</i> ²	0.024	0.473	0.217	0.388

Standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

Back to Results

Corresponding ↑ Likelihood in *Any* Prescription Refills

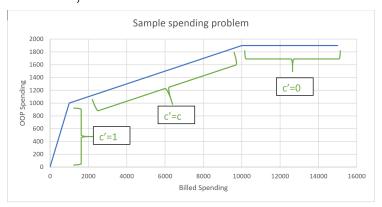


Back to Results

Optimal medical spending:

$$m_{ift}^* = \frac{1}{1 + p_{ift}(\alpha_1 - 1)} \left(\lambda_{ift} + \omega(1 + p_{ift}(\alpha_1 - 1) - c'_j(m_{ift})) - p_{ift}\alpha_2 m_{ft}^{CH} \right).$$

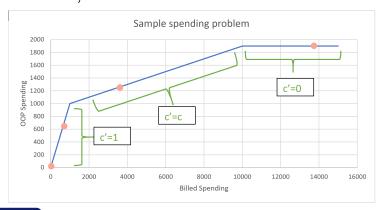
Note that c'_i(m_{ift}) depends on overall spending



Optimal medical spending:

$$m_{ift}^* = \frac{1}{1 + p_{ift}(\alpha_1 - 1)} \left(\lambda_{ift} + \omega(1 + p_{ift}(\alpha_1 - 1) - c'_j(m_{ift})) - p_{ift}\alpha_2 m_{ft}^{CH} \right).$$

Note that c'_i(m_{ift}) depends on overall spending



Back to Model The Value of Health Risk Information The model has the following parameters of interest (θ) to be estimated: **1** Type shifters: coefficients shifting starting means in { $p_{ift}, \mu_{\lambda,i}, \psi_{f,t}$ }

$$\begin{bmatrix} p_{i,o} \\ \mu_{\lambda,i} \\ \log(\psi_{f,o}) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \beta_{p} \boldsymbol{X}_{k}^{p} \\ \beta_{\lambda} \boldsymbol{X}_{k}^{\lambda} \\ \beta_{\psi} \boldsymbol{X}_{k}^{\psi} \end{bmatrix}, \begin{bmatrix} \sigma_{p}^{2} & & \\ \sigma_{p,\lambda} & \sigma_{\mu}^{2} & \\ \sigma_{p,\psi} & \sigma_{\lambda,\psi} & \sigma_{\psi}^{2} \end{bmatrix} \right)$$

The model has the following parameters of interest (θ) to be estimated:

- **1 Type shifters:** coefficients shifting starting means in $\{p_{ift}, \mu_{\lambda,i}, \psi_{f,t}\}$
- **2** Type evolution: coefficients that change p_{ift} and ψ_{ft} over time (including $\{\sigma_v^2, \sigma_{\psi}^2\}$)

The model has the following parameters of interest (θ) to be estimated:

- **1** Type shifters: coefficients shifting starting means in $\{p_{ift}, \mu_{\lambda,i}, \psi_{f,t}\}$
- 2 Type evolution: coefficients that change p_{ift} and ψ_{ft} over time (including {σ_v², σ_ψ²})
- **3** Preference parameters: $\alpha_{1f}, \alpha_{2f}, \omega, \eta$, and σ_{ε}^2

The model has the following parameters of interest (θ) to be estimated:

- **1** Type shifters: coefficients shifting starting means in $\{p_{ift}, \mu_{\lambda,i}, \psi_{f,t}\}$
- 2 Type evolution: coefficients that change p_{ift} and ψ_{ft} over time (including {σ²_ν, σ²_ψ})
- **3** Preference parameters: $\alpha_{1f}, \alpha_{2f}, \omega, \eta$, and σ_{ε}^2
- 4 Other **shape parameters** suppressed from notation

I estimate the model via simulated maximum likelihood (Train, 2009)

I estimate via the following steps:

1 Numerically integrate over dimensions of unobserved heterogeneity ({ $p_{io}, \mu_{\lambda,i}, \psi_{f,pre}$ })

I estimate via the following steps:

- 1 Numerically integrate over dimensions of unobserved heterogeneity ({ $p_{io}, \mu_{\lambda,i}, \psi_{f,pre}$ })
- 2 Simulate individual-level parameters across these support points

I estimate via the following steps:

- 1 Numerically integrate over dimensions of unobserved heterogeneity ({ $p_{io}, \mu_{\lambda,i}, \psi_{f,pre}$ })
- 2 Simulate individual-level parameters across these support points
- 3 Calculate implied λ_{ift} in each period given data/parameters

4 Construct conditional pdf of spending:

$$f_m(m_{ift}|\boldsymbol{\upsilon}_{its},\boldsymbol{\theta},\boldsymbol{X}) = \begin{cases} \Phi\left(\frac{-\kappa_i-\mu_{\lambda,i}}{\sigma_{\lambda,i}}\right) & m_{ift} = \mathbf{o} \\ \Phi'\left(\frac{\lambda_{ift}-\kappa_i-\mu_{\lambda,i}}{\sigma_{\lambda,i}}\right) & m_{ift} > \mathbf{o}. \end{cases}$$

4 Construct conditional pdf of spending:

$$f_m(m_{ift}|\boldsymbol{\upsilon}_{its},\boldsymbol{\theta},\boldsymbol{X}) = \begin{cases} \Phi\left(\frac{-\kappa_i-\mu_{\lambda,i}}{\sigma_{\lambda,i}}\right) & m_{ift} = \mathbf{0} \\ \Phi'\left(\frac{\lambda_{ift}-\kappa_i-\mu_{\lambda,i}}{\sigma_{\lambda,i}}\right) & m_{ift} > \mathbf{0}. \end{cases}$$

5 Construct choice probabilities:

$$L_{fjts} = \frac{\exp(U_{fjts}/\sigma_{\epsilon})}{\sum_{i \in \mathcal{J}_{ft}} \exp(U_{fjts}/\sigma_{\epsilon})}$$

4 Construct conditional pdf of spending:

$$f_m(m_{ift}|\boldsymbol{\upsilon}_{its},\boldsymbol{\theta},\boldsymbol{X}) = \begin{cases} \Phi\left(\frac{-\kappa_i-\mu_{\lambda,i}}{\sigma_{\lambda,i}}\right) & m_{ift} = \mathbf{0} \\ \Phi'\left(\frac{\lambda_{ift}-\kappa_i-\mu_{\lambda,i}}{\sigma_{\lambda,i}}\right) & m_{ift} > \mathbf{0}. \end{cases}$$

5 Construct choice probabilities:

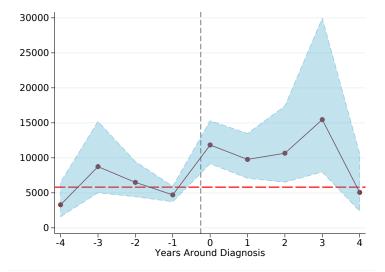
$$L_{fjts} = \frac{\exp(U_{fjts}/\sigma_{\epsilon})}{\sum_{i \in \mathcal{J}_{ft}} \exp(U_{fits}/\sigma_{\epsilon})}$$

6 Construct likelihood function and optimize:

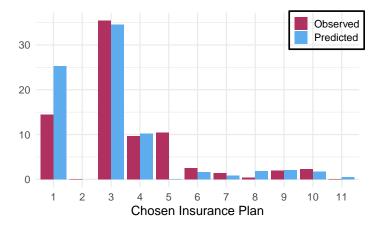
$$LL_f = \sum_{s=1}^{S} W_s \left(\prod_{t=1}^{T} \sum_{j=1}^{J} d_{fjt} f_m(m_{ft}) \cdot L_{fjts} \right)$$

Model Performance: Major Health Events

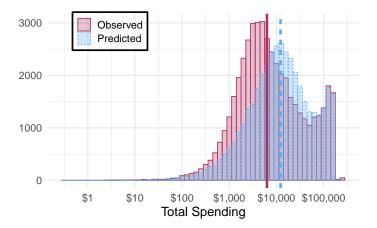
Model captures impacts of major health events on predicted spending



Model fit in the plan choice stage (match rate: 82.2%)



Model fit in the health spending stage

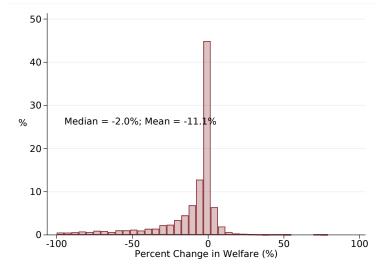


		Preferred Specification					
		Estimate Std. Err.					
Panel B: Heterogeneity in Types							
$\sigma_{arepsilon}^{_2}$	Idiosyncratic Shock	3.56	(0.085)				
σ_p^2	Initial Beliefs	14.51	(0.001)				
σ_{ψ}^{2}	Initial Risk Aversion	2.57	(0.005)				
$\sigma_p^2 \sigma_{\psi}^2 \sigma_{\chi}^2$	Acute Shocks	2.03	(0.001)				
$ ho_{p,\psi}$		-0.54	(0.002)				
$\rho_{p,\lambda}$		0.38 (0.002)					
$ ho_{\psi,\lambda}$		0.09	(0.002)				

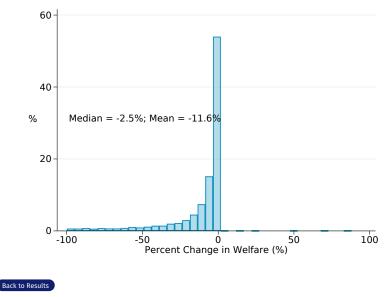
	p _o	λ	κ	ψo
Intercept	0.089	0.190	-0.105	0.112
Age	0.084	-0.088	-0.097	
Age ²	0.115	-0.006	-0.087	
Female	0.102	0.219	-0.117	
Individual risk score	0.100			
Any PE condition in family	0.107			
Туре		0.152		
Family size				0.107
Average family age				0.052
Average family risk score				0.140

Back to Structural Results

Estimated Value of Information: Percentage Changes



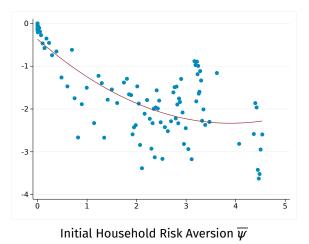
Estimated Value of Information: Percentage Changes



Heterogeneity in Welfare Effects of Information

Less averse households experience lower welfare penalties

Higher risk aversion ⇒↑ "translation" of events into spending



Heterogeneity in Welfare Effects of Information

Households with \uparrow expected risk experience lower welfare penalties

• Higher risk \Rightarrow smaller change in spending outcomes

