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Abstract

Improving returns on health spending requires balancing tradeoffs between promot-
ing innovative treatments and equitable access to care. In addition to being cost-
prohibitive, innovations may reduce availability of older services, an understudied
source of inequity. I propose a model of surgical specialization with productivity
spillovers to study these effects. When innovations compete for inputs to other proce-
dures, total access to care drops, causing some patients to forego care altogether. This
crowd-out may be inequitably borne across patient groups or markets. I apply the
model to aortic valve replacement and support interventions, showing that innovation
reduced intervention volumes, particularly for patients of marginalized groups.
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1 Introduction

Improving the quality of medical treatments has immense economic and social value, through

returns from improved health and insurance value from reduced population risk (Murphy

and Topel, 2006; Lakdawalla et al., 2017). Developing and disseminating novel medical

technologies is a promising way to improve the return on high levels of health spending in

developed countries (Cutler et al., 2007). However, novel technologies may exacerbate health

inequities, which have affected marginalized individuals across socioeconomic status, race,

and ethnicity—among others—for over two centuries (Adler and Rehkopf, 2008).

Novel interventions, which are typically high-cost, can be inaccessible to lower-income

individuals immediately following adoption, generating well-documented financial barriers

to care (Hoagland and Kipping, 2024; Arcaya and Figueroa, 2017). In addition, innovations

create indirect effects which affect access to other, older technologies; these effects vary

based on the characteristics of the innovating technology. On the one hand, technological

advancements may expand access to earlier, now cheaper, generations of a technology. For

example, innovation in durable goods markets—such as MRI machines—may reduce the price

of older models and subsequently, barriers to access (Gowrisankaran and Rysman, 2012). On

the other hand, innovations that instead inhibit availability of older technologies may reduce

overall access insofar as they compete for scarce inputs; for example, capacity-constrained

physicians with limited availability post-adoption (Gandhi, 2023; Kalouptsidi, 2014).

Importantly, scarcity-driven inequities may result in reduced overall access to both old

and new technologies, resulting from a confluence of two mechanisms. First, hyper-specialized

physicians facing innovation become more selective in performing older procedures. Second,

if physicians benefit from specialization, reduced availability may be compounded by a loss

of skill, leading to volume reductions for older techniques that outpace innovation take-up.1

This may result in some patients losing access to specialized treatment entirely, with unique

impacts on equitable access to healthcare. To ensure procedural innovations maximize social

welfare gains, it is important to understand under what conditions these inequities arise and

how severe their effects might be.

I present a model of physician decision-making characterizing these effects. Physicians

select one of three treatments for patients: two interventions of different intensity (in the

empirical setting, a high-intensity aortic valve replacement or a lower-intensity aortic valve

support procedure), and standard maintenance care. The model incorporates technological

spillovers, meaning treatment returns increase with volume (Chandra and Staiger, 2007).

1“Hyper-specializing” may allow hospitals and medical professionals to achieve higher-quality outcomes
(Clarify Health Institute, 2023).
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Innovations increasing returns to high-intensity procedures change decision-making along

two margins. First, some intermediate-risk patients are sorted into higher-intensity inter-

ventions, decreasing the use of lower-intensity procedures and corresponding returns for “in-

framarginal” patients continuing to receive them. Second—and more surprising—reduced

returns result in some high-risk patients no longer receiving any intervention at all.

The model’s central insight is that extensive margin changes may inequitably affect some

patient groups. Inequitable crowd-out may arise directly—because different groups have

different surgical appropriateness—or indirectly—because risk is imperfectly observed across

groups. Studying this crowd-out highlights that in settings where a substantial fraction of

patients cannot immediately access interventions, incorrect or biased perceptions of risk may

make some groups less likely to receive care, independent of underlying need. An innovation’s

effects on total availability may further exacerbate these differences.

I empirically test these predictions using the dissemination of transcatheter aortic valve

replacement (TAVR) procedures in the US. TAVR is a minimally invasive and cost-effective

alternative to open-heart surgery treating aortic stenosis; importantly, TAVR expanded both

supply and demand for valve replacements, as it is performed by interventional cardiologists

(instead of only cardiothoracic surgeons) and is appropriate for patients deemed too high-risk

for traditional open-heart surgery. Hence, I use TAVR’s adoption in a local market as a shock

to the high-intensity intervention in the model. TAVR’s adoption has been used previously

to study physician learning and centralized access to innovations (Yang, 2023) and hospital-

and market-level adoption decisions (Huckman and Stern, 2022; League, 2023).

I estimate how adoption affected the availability of lower-intensity procedures, focus-

ing on the provision of valve support interventions (percutaneous coronary interventions, or

PCIs). Although adjacent to—not replaced by—TAVR, I observe the provision of PCIs falls

dramatically following adoption, causing total procedural volume to decline. This validates

the model predictions: patients foregoing care are higher risk—on the margin between select-

ing into treatment interventions at all—and inequitable differences are observed both within

and across markets. Across markets, patients who lose access are more likely to reside in

markets with greater health deprivation or a greater share of nonwhite patients. Within a

commuting zone, patients living in more disadvantaged zip codes, are dual eligible, or are

nonwhite appear to be more affected by reductions in intervention availability post-TAVR.

Importantly, inequitable crowdout is associated with poorer outcomes for patients; follow-

ing adoption, more PCIs are precipiated by acute cardiac events, and more PCI patients

experience cardiac events post-procedure.

The model and empirical findings fit into a discussion of the potentially unequal impact of

technological change (Skinner and Staiger, 2015). Although much of this discussion studies
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skilled-biased innovations in the factor market (Violante, 2008; Acemoglu and Restrepo,

2020), recent work explores innovation’s impacts on product markets, arguing the endogenous

direction of innovation results in products aimed at higher-income households (Faber and

Fally, 2022; Jaravel, 2019). This directed technological change is also prevalent in healthcare,

where market size and patient incomes drive entry decisions for pharmaceuticals and funding

for clinical trials (Acemoglu and Linn, 2004; Moradpour and Hollis, 2020). The flow of health

innovations is also sensitive to market features such as drug coverage (Agha et al., 2022),

procurement environments (Clemens and Rogers, 2020), and tax incentives (Gamba et al.,

2021; Yin, 2008). My work highlights the previously overlooked spillover effects of such

directed technological change on equitable access to adjacent technologies and specialty care

more broadly, similar to the study of spillovers from medical innovations within a disease

category (Callison et al., 2023). The inequities I identify arise when economies of scale cause

an innovation shock in one sector to affect technological returns in another, reducing patient

welfare in possibly unequal ways.

I present the first theoretical framework for considering equity impacts of health inno-

vations, contributing to literature on both health innovation and equity. Recent work has

explored policies to equitably improve access to high-value services through physician pay-

ments (Kaarboe and Siciliani, 2023) or limiting geographic variation in service provision

(Chandra et al., 2022). I argue technological advancement contributes to these disparities,

modeling responses to susceptible innovations and identifying policy prescriptions.

Health disparities have increased in recent years, with some groups even experiencing dis-

proportionate decreases in life expectancy (Case and Deaton, 2015; Olshansky et al., 2012).

This paper highlights that procedural innovations are not guaranteed to improve access,

with inequities potentially spilling over into adjacent services; this is related to previous

work studying the spillover effects of health events (Fadlon and Nielsen, 2019; Hoagland,

2024), as well as work studying how hospital procedural decisions may differ on the basis of

race (Singh and Venkataramani, 2024). Policymakers aiming to improve equitable access to

innovative care may widen their focus beyond accessing innovations alone, considering also

broader protections to limit unintended spillovers. Rather than reducing or regulating the

flow of welfare-improving innovations, policies supporting appropriate infrastructure to scale

up an innovation without crowding out older procedures may limit these effects, particularly

in the short run. For example, promoting thicker markets for interventional cardiologists or

investments in catheterization labs may have helped to offset the spillover effects of TAVR’s

adoption.

Using TAVR as a case study underscores that inequities arise primarily when innovations

compete with older technologies for scarce inputs. These results are therefore generalizable
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to a broader class of innovations, including procedural healthcare innovations, which are

understudied relative to pharmaceutical developments (Dranove et al., 2022; Trajtenberg,

1989). However, results may also apply to a more expansive set of innovations, such as

developments in education (Biasi et al., 2021; Biasi and Ma, 2022).2 Finally, my work is

related to discussion of identification of treatment effects across multiple margins of impact

(Mountjoy, 2022).

2 Setting and Data

2.1 Adoption of TAVR

Aortic stenosis is a serious condition affecting 1.5 million people in the US; untreated, its

5-year survival rate is roughly 20% (Rosalia et al., 2023). It is the most common heart

valve condition and the third most common cardiovascular disease (after hypertension and

coronary artery disease) in the world.

TAVR is a minimally-invasive alternative to surgical aortic valve replacement (SAVR),

involving the transfemoral placement of an expandable valve instead of open-heart surgery.

Numerous randomized trials have indicated that TAVR is noninferior among patients at

intermediate or high risk for mortality from SAVR (Leon et al., 2016) and, subsequently,

low-risk patients (Mack et al., 2019). The first TAVR device (Edwards-SAPIEN) received ap-

proval from the Food and Drug Administration for high-risk patients in November 2011 (Dvir

et al., 2012); over time, TAVR’s use has expanded to include lower-risk patients, outpacing

SAVR as the leading surgical approach in 2017 (D’Agostino et al., 2018). Conditional on

risk, TAVR is considered a cost-effective alternative to SAVR (Baron et al., 2019). However,

important access gaps persist, with fewer than half of patients needing a valve replacement

receiving them (Li et al., 2022).

The adoption of TAVR is ideal for studying the potentially unequal impacts of innovation

for two reasons. First, TAVR was market-expanding: the median number of valve replace-

ments in the US increased by one-third following adoption, with the number of operating

surgeons nearly doubling (Appendix Table A.1). This increase in the total addressable mar-

ket provided incentives for physicians to alter practice styles, similar to expansions of PCIs

in the 1990s (Cutler and Huckman, 2003).

Second, TAVR disrupted the supply of valve replacement surgeries and procedures:

2For example, recent work considers detrimental effects of broadband internet in primary schools (Belo
et al., 2014), noting that technology is not equitably accessible (Supovitz and Manghani, 2022; Bacher-Hicks
et al., 2021). If innovations in classrooms directly compete for other resources—e.g., teacher attention—
expanded internet-based learning may inequitably disrupt student learning.
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whereas SAVR could be performed only by cardiothoracic surgeons, TAVR is performed

by a team of surgeons and interventional cardiologists (Adams et al., 2014). Importantly,

these two specialists receive differentiated training: after residency, interventional cardiolo-

gists complete three years of cardiology fellowship and an additional year specific to inter-

ventional cardiology, while cardiac surgeons complete six to seven years of cardiothoracic

surgery fellowships (Huckman and Stern, 2022). These unique training paths allow surgeons

to hyper-specialize in different approaches at the expense of other skills. By 2017, 20% of

TAVRs were performed by interventional cardiologists (Appendix Figure A.1), highlighting

the comparative advantages of the two interventions (Breg, 2022).

2.2 Data

I assess the impact of TAVR adoption for traditional Medicare patients seeking cardiology

care using fee-for-service (FFS) claims data from 2010 to 2017.3 I observe 100% of inpatient

procedures performed, with patient risk and demographic information including race, sex,

dual eligibility, area-level disadvantage scores, and risk score (Ellis et al., 2022).4 I identify

surgeon specialization using the Medicare Data on Provider Practice and Specialty (MD-

PPAS) file. I perform analysis at both the local market level (measuring total surgical

volume) and individual patient-level analyses, described below.

Labor Market Definitions. I define local markets at the commuting zone (CZ) level.

CZs are geographically contiguous groups of counties within which residents typically com-

mute (for example, to work), and are constructed based on Census commuting flow data.

I assign CZs based on patient residence available in the Beneficiary Summary file, to avoid

problems of market definitions should patients travel to another market to receive a preferred

procedure (Dingel et al., 2023). There are roughly 700 CZs commuting zones in the latest

(2020) definition (Fowler et al., 2016); of these, 452 are included in my sample, as I require

a market to perform at least 5 interventions annually. Similar work in this area has used

commuting zones as reasonable definitions of local labor markets for hospitals and physicians

(Prager and Schmitt, 2021; Rinz, 2018). Within each market, I define the timing of TAVR

adoption based on the first documented procedure in the CMS inpatient claims data.

Patient Definitions. In addition to market-level analyses, I report results at the patient

level measuring the probability of receiving cardiothoracic interventions. I obtain patient-

level demographics and claims information using the 20% Beneficiary Summary and Carrier

3Note data excludes individuals enrolled in Medicare Advantage plans.
4Disadvantage scores are from the Neighborhood Atlas’ Area Deprivation Index, which ranks zip codes

by socioeconomic disadvantage given income, education, employment, and housing quality (Kind and Buck-
ingham, 2018).
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files. I include all observed patients in these files in the denominators of the main patient-level

analyses, rather than limit attention to only patients who are candidates for the interven-

tions I am considering, in order to avoid misclassifiation. Identifying medically-managed

patients with aortic stenosis who are candidates for surgical interventions is difficult given

that aortic stenosis is a common condition among elderly patients, but typically is of minor

severity. Hence, patients may not have aortic stenosis diagnostic information included on

their outpatient claims in the Carrier file even though they have the condition, as it may be

undiagnosed or superseded by other conditions (Chiang et al., 2016; Hoagland et al., 2024).

Furthermore, many of the patients with aortic stenosis on their chart may not realistically be

candidates for interventions, given that their condition is likely not severe enough to warrant

the risks of a procedure. Despite these concerns, my results are robust to limiting patient-

level denominators to patients with an observed aortic stenosis diagnosis in the Carrier file

prior to interventions.5 My main sample includes 10,874,161 Medicare patients, of whom

1,343,580 have an aortic stenosis diagnosis and 6,780 receive a valve replacement or valve

support intervention during the window of observation.6

Procedure Definitions. I define both valve replacement procedures and valve support

procedures, in keeping with the model setup. Valve replacement procedures include SAVR,

the original open-heart surgical method to treat severe aortic stenosis; and TAVR, the in-

novative, minimally-invasive alternative. Valve support procedures include all valve-related

cardiac procedures to treat aortic stenosis and other conditions for patients who are not

candidates for valve replacement surgeries. The most common of these procedures are an-

gioplasty (also referred to as percutaneous transluminal coronary angioplasty, or PTCA),

coronary artery bypass grafting (CABG), and cardiac catheterization (also referred to as

angiogram). Importantly, prior to TAVR’s adoption, these revascularization interventions

were used either in combination with SAVR or as a lower-intensity alternative for patients

too high-risk for open surgical replacements (Goel et al., 2012). Appendix Table A.2 de-

fines the relevant codes used to identify both valve replacements and valve supports. For

market-level analysis, I restrict the relevant procedures to those performed by interventional

cardiologists, in order to most closely match the predictions of the model; when performing

analysis at the patient level, I include all procedures regardless of what surgical specialty

performed them.

5Aortic stenosis diagnoses are identified in the data using ICD-9 codes 395.0, 746.3, 396.2, and 424.1,
and ICD-10 codes I06.0, I06.2, I35.0, and Q23.0.

6Note that this is a prevalence rate of about 12.4%, roughly in line with estimated AS prevalence
(Osnabrugge et al., 2013).
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2.2.1 Summary Statistics.

Table 1 presents relevant summary information across the different procedures considered

in the empirical exercise, including valve replacements and supports. Valve replacements

are roughly four times costlier than valve support procedures, including for both SAVR and

TAVR. Note that TAVR is performed on riskier patients than SAVR (a difference of 15.8%),

but that the average PCI recipient is similarly riskier than the average valve replacement

recipient (a difference of 14.5%). While TAVR is performed on riskier patients, it achieves

comparable outcomes to SAVR—in terms of mortality and readmission—even in the first

year of adoption. Aside from TAVR’s use on older patients (an average age of 82.8 years

for TAVR compared to 78.6 years for SAVR), there are few other observable differences in

patient demographics across valve replacements, during the year of innovation. In contrast,

valve supports tend to be performed more on dual eligible and Black patients than SAVR or

TAVR.

3 Model

Suppose there is a continuum of patients suffering from a single disease. Patients and

physicians—acting jointly—can select from three possible treatments, indexed by s ∈ {0, 1, 2}:
preventive maintenance (s = 0), low-intensity surgical interventions (s = 1), and high-

intensity surgical interventions (s = 2).7 Empirically, s = 2 corresponds to valve replace-

ments (SAVR/TAVR) while s = 1 corresponds to valve supports (PCIs).8

A procedure’s patient-specific appropriateness depends on a risk index θis for patient

i. When observed perfectly, θis captures both diagnostic severity and surgical risk; hence,

individuals with lower θis receive more intensive treatment. In practice, θis is not observable,

but proxied by observable characteristics Zis (see Section 4.3). The expected utility of a

procedure Uis is given by

Uis = βisZis + αsPs + εis, s ∈ {0, 1, 2}, (1)

where Ps represents the fraction of the population receiving treatment s. Equation 1 in-

7Note that the model abstracts away from issues related to physicians as imperfect agents, assuming
instead that the physician and patient act as a joint decision maker in determining care (Chandra et al.,
2011).

8Chandra and Staiger (2007) use only two sectors—intervention and maintenance—and resulting
spillovers. My model introduces vertically-differentiated interventions, with maintenance care as the outside
option; although there are spillovers across all sectors, those between the surgical interventions are partic-
ularly salient. These spillovers arise because both interventions require surgeons to specialize differently,
reducing capacity to perform all procedures.
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Valve Replacements Valve Supports

All SAVR TAVR All PTCA Cath.

Panel A: Procedure Costs and Risks
Billed Cost $62,542 $65,999 $60,018 $14,973 $16,870 $ 9,549

($ 562) ($ 965) ($ 657) ($ 31) ($ 41) ($ 33)
Patient Risk 5.02 4.61 5.33 5.75 5.50 5.90

(0.076) (0.108) (0.104) (0.013) (0.019) (0.025)
Readmission 20.48 20.11 20.77 13.79 15.28 16.41

(0.790) (1.193) (1.052) (0.078) (0.131) (0.150)
Mortality 5.02 5.05 5.17 4.79 2.91 3.39

(0.427) (0.652) (0.574) (0.048) (0.061) (0.073)

Panel B: Patient Demographics
Age 81.0 78.6 82.8 73.0 72.5 71.5

(0.17) (0.27) (0.20) (0.02) (0.04) (0.04)
Female 0.43 0.41 0.45 0.44 0.39 0.49

(0.010) (0.015) (0.013) (0.001) (0.002) (0.002)
Black 0.03 0.03 0.02 0.10 0.07 0.12

(0.003) (0.005) (0.004) (0.001) (0.001) (0.001)
Hispanic 0.00 0.00 0.00 0.01 0.01 0.01

(0.001) (0.002) (0.002) (0.000) (0.000) (0.000)
Dual Eligible 0.12 0.10 0.13 0.23 0.20 0.26

(0.006) (0.009) (0.009) (0.001) (0.001) (0.002)

Total Volume 2,612 1,129 1,488 196,514 75,530 60,858

Notes: Summary statistics from relevant valve procedures, 2010–2017. Means and
standard errors shown for the year of TAVR adoption at the CZ level. Cath. refers to
cardiac catheterization. Patient risk, readmission, and mortality rates are calculated
at the 30-day level.

Table 1. Summary Statistics: Procedures

corporates productivity spillovers in the second term, in the style of Chandra and Staiger

(2007); if αs > 0, increased local use of s improves average outcomes regardless of Zis.

Given linear utility, patients’ treatment decisions can be characterized as two-way com-

parisons for any θis. To simplify these comparisons, I make the natural assumption that

optimal treatment intensity is perfectly distributed across θis; this is equivalent to assum-

ing the marginal utility of treatment with respect to risk is greater (in absolute value) for

more intensive interventions.9 Patients then choose treatment only along two margins: a

choice between valve replacement and valve supports, or a choice between supports and no

9|∂Ui2/∂θ2| > |∂Ui1/∂θ1| > |∂Ui0/∂θ0|. When θis perfectly captures patient appropriateness, this is not
a special case.
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intervention at all. This allows me to represent risk as a single measure across treatments,

θi.

A patient thus chooses the intensive treatment, s = 2, only if Ui2 > Ui1. Over the

distribution of Zi, this probability is given by:

Pr{s = 2} = Pr{Ui2 − Ui1 > 0}

= Pr{(βi2 − βi1)Zi + α2P2 − α1P1 > εi1 − εi2}

= Pr{β21Zi + α2P2 − α1P1 > ε12}, (2)

and the probability that a patient chooses the intermediate treatment (s = 1) is:

Pr{s = 1} = Pr{Ui1 − Ui0 > 0}

= Pr{(βi1 − βi0)Zi + α1P1 − α0P0 > εi0 − εi1}

= Pr{β10Zi + α10P1 + α0P2 − α0 > ε10}. (3)

The equilibrium is therefore defined as a fixed point that solves the system of equations:

P1 =

∫
Z

Pr{β10Z + α10P1 + α0P2 − α0 > ε10}f(Z)dZ (4)

P2 =

∫
Z

Pr{β21Z + α2P2 − α1P1 > ε12}f(Z)dZ. (5)

An equilibrium can be conceptualized in a single-crossing framework: any initial allocation

generates utility benefits that induce marginal patients to switch between the three treatment

options. These flows, in turn, affect the returns to each procedure, further shifting patients

and returns until a stable equilibrium is reached.

Figure 1 (a) plots Us(θi) for each s, illustrating the allocation of patients to treatments.

Overall, utility is declining in risk; however, by assumption, declines are steeper for more

intensive treatments. This creates three well-defined treatment regions: low-risk patients

select s2, moderate-risk patients select s1, and high-risk patients choose no intervention (s0).

Denote the cutoff risk levels θ and θ; combined with the distribution of θ, these define each

treatment’s market share.

3.1 The Effect of Innovations

Consider an innovation in valve replacements (TAVR) affecting high-intensity treatments, s2.

This innovation can be characterized as a uniform cost reduction across θ without affecting

survival utility, as TAVR is cost-effective and risk-reducing (Section 2); hence suppose U1
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Figure 1. Treatment Decisions Based on Patient Risk

(a) Base

0
θ

Ut

θ θ
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(b) Direct Effects
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θ
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θ θ
′ θ
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(c) Indirect Effects

0
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UiUi

θ θ
′ θθ′
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s′1

P1 → P2 P1 → P0

Notes: Graphical illustration of model equilibria pre- and post-innovation. Panel (a) presents treatment
utilities given θ prior to innovation, which define treatment regions for s2 (red, P2); s1 (blue, P1); and
s0 (yellow, P0). Panel (b) presents direct effects of innovation, which changes the threshold between
high- and low-intensity interventions (captured in purple). Panel (c) highlights indirect effects, where
spillover externalities result in movement from s1 to s0 (captured in green).

shifts by a fixed τ .10

The second and third panels of Figure 1 present the direct and indirect effects of this

shift. In panel (b), the utility increase from s2 directly attracts patients who switch from

low-intensity intervention (shown in purple). This flow changes the returns to intermediate

treatments, lowering expected returns even for inframarginal patients who continue to receive

s1 (in blue).11

Importantly, these spillover externalities result in further utility increases for s2 and

corresponding decreases in U1. Panel (c) shows these indirect effects as two separate flows

out of s1: some into s2 and others into s0 (shown in green). The new equilibrium has updated

risk thresholds (θ
′
, θ′).

Notably, the shift in θ defines a share of patients who now forego treatment. To quantify

10τ need not be constant for results to hold, but is assumed to be fixed here for ease of exposition.
11Note: one possibility that readers may consider at this point is whether the innovation could provide a

benefit for the productivity of incumbent technologies; in the empirical context, this amounts to the extent to
which performing TAVR enhances surgical skill for other PCIs such as angioplasty and catheterization. These
types of spillovers are possible, particularly as both TAVR and other PCIs such as angioplasty commonly
involve guiding catheters or replacement valves through the femoral artery to the heart. However, spillovers
across surgical categories are unlikely to be equal in size to spillovers within an intervention type; hence in the
model, these can be differenced out or set to zero without loss of generality. Although similar, the procedures
considered are still fundamentally different: for example, TAVR involves the inflation and placement of a
new aortic valve in a patient’s heart, while catheterization requires using the guide wires and catheter to
remove blockages.
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this crowd-out, note that the risk thresholds θ and θ are defined, in expectation over ε, by

β2θ + α2F (θ) + τ = β1θ + α1

(
F (θ)− F (θ)

)
(6)

β1θ + α1

(
F (θ)− F (θ)

)
= β0θ + α0 (1− F (θ)) . (7)

This system of equations defines comparative statics measuring how risk thresholds

change with an innovation’s value τ :

∂θ

∂τ
=

β10 + (α0 + α1)f(θ)

α2
1f(θ)f(θ)− [β21 + f(θ)(α1 + α2)][β10 + f(θ)(α0 + α1)]

(8)

∂θ

∂τ
=

α1f(θ)

α2
1f(θ)f(θ)− [β21 + f(θ)(α1 + α2)][β10 + f(θ)(α0 + α1)]

, (9)

where βij = βi − βj for i, j ∈ {0, 1, 2}.
When the innovation is market-expanding for s2, the shift in the extensive margin (Equa-

tion 9) is nonpositive—so patients are crowded-out from treatment—if and only if

α1f(θ)

β10 + (α0 + α1)f(θ)
≤ 0 (10)

⇔ −α0f(θ)︸ ︷︷ ︸
∂P0/∂θ

−α1[f(θ)− f(θ)]︸ ︷︷ ︸
∂P1/∂θ

≥ β1 − β0. (11)

The terms on the left side of the inequality represent post-innovation reductions in produc-

tivity spillovers for both s0 and s1. The right side captures differences in the marginal utility

of each treatment. Hence, crowd-out occurs when the marginal utility gains from receiving

any surgical intervention (the switch from s0 to s1) outweigh the losses from diminished

productivity spillovers for s1. As utility gains from treatment tend to be large relative to

provider specialization, this condition is likely to be met in many cases.12

3.2 Exacerbating Inequities

Any loss in efficient access to specialty care may be considered a market distortion. How-

ever, these losses may differ substantially across patient groups, particularly if groups have

heterogeneous risk; losses may be further exacerbated if some groups have systematically

misperceived risks.13

12For example, however, innovations requiring extensive physician re-training with uncertain clinical ben-
efits may not generate these effects.

13Here, I focus on patients affected at the extensive margin; however, patients remaining on s1 also
have reduced expected utility post-innovation. As these patients are adjacently at-risk, they may also be
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Assume that the condition for crowd-out is satisfied (Equation 11), so that there is a

region C of patients who received s1 prior to an innovation and s0 post-adoption (C = [θ, θ′]).

However, suppose that clinicians do not observe θ directly but a proxy θ̂.14 Assume θ̂ is

a linear combination of observable characteristics Zis correctly predicting θ except for an

idiosyncratic, mean-zero error νis:

θis = Zisγ︸︷︷︸
θ̂

+νis. (12)

Group membership can be represented as a binary variable dig ∈ Zis indicating if patient

i is a member of a group g. Groups may include demographic (e.g., low-income) or clinical

indicators (e.g., patients with diabetes, smokers); such indicators routinely inform patient

risk calculations (van Ryn and Burke, 2000). The coefficient γd captures discrete shifts in

predicted risk across groups.15 If membership is informative (γd 6= 0), patients in different

groups constitute different shares of the crowdout region, sC,g, determined by the underlying

distributions of θ and Zisγ and Bayes’ rule:

sC,g = Pr(i ∈ g|i ∈ C) = Pr(i ∈ C|i ∈ g)
Pr(i ∈ g)

Pr(i ∈ C)
(13)

=
sg
sC

[Pr(Zit,−gγ−g + γg ∈ [θ, θ′]] (14)

=
sg
sC

[∫ θ′−γd

θ−γd
f(Zit,−gγi,−g)d(Zit,−gγi,−g)

]
(15)

= sg

∫ θ′−γd
θ−γd

f(Zit,−gγi,−g)d(Zit,−gγi,−g)∫ θ′
θ
f(θ)dθ

. (16)

Here, sg indicates the share of group g in the population, and sC = F (θ) − F (θ′) is the

relative size of C. As these are not equal in general, C may over- or under-represent g.

Figure 2 presents the intuition of this result, illustrating the crowd-out region (Figure 1) for

heterogeneous risk distributions across two hypothetical groups. Even when risk is correctly

measured, these groups have different likelihoods of losing access to specialty treatment.

Further inequities arise, however, when γd is incorrectly measured. Imperfect proxying

may arise from provider error or other factors, including patient beliefs or biased health

measurements like risk scores (Obermeyer et al., 2019). This measurement error distorts the

disproportionately represented by certain groups.
14θ̂ is a combination of physician assessment, patient beliefs, and clinical histories.
15For ease of exposition, assume dig is independent to all covariates Zis,−g = Zis \ dig.
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Figure 2. Inequities in Crowdout

θ θθ
′ θ′0

θ

Notes: Graph shows potential differences in which patients forego specialty care following an innovation.
Patient pool is divided into two groups with heterogeneous risks; patient risk θ determines treatment
status, denoted by {θ, θ}. Innovations shift these cutoff values, creating a crowd-out region (shaded).

likelihood that members of g are represented in C. To quantify this relationship, suppose

that instead of using γg in risk calculations, θ̂ relies on the use of a “noisy signal” γ̂g:

γ̂g = γg + ν, (17)

where ν is an idiosyncratic error in group risk measurement.16 I measure ν ′s effects on crowd-

out representation as the ratio of group membership s′C,g(ν) to the original representation,

sC,g:

I(ν) =
s′C,g(ν)

sC,g
(18)

=
1

sC,g

∫
θ−γd−ν

θ′−γd−ν f(Xi,−gγi,−g)d(Xi,−gγi,−g). (19)

Importantly, notice that

∂I

∂ν
=

[
fX−gγ−g(θ − γd − ν)− fX−gγ−g(θ′ − γd − ν)

]
sC,g

. (20)

That is, risk perception error ν affects group-specific crowd-out proportionately to the initial

composition of g in C. Appendix Figure A.2 presents the intuition behind this result;

intuitively, ν incorrectly shifts patients of one group up or down along the risk distribution,

θ, leading the “over-estimated group” more likely to lose access to care.

16ν is not classical measurement error or necessarily centered around 0. In addition, ν can be allowed to
vary across providers or patients.
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3.3 Empirical Implications

The model predicts that innovations may generate spillover health inequities in two steps.

First, innovations affect technological spillovers and create “crowd-out regions,” shifting

high-risk patients out of interventions. Second, these affected patients may be systematically

different from the overall population, particularly if risk is incorrectly proxied.

Three empirical implications arise from this model. First, I test for the direct and indirect

effects of innovation by assessing how adopting physicians substitute patients along treatment

margins; this is done by examining intervention volume both overall as well as by intervention

type (and within intervention type, by procedure). I then identify which patients are affected

based on their risk, paying particular interest to the existence and magnitude of crowd-

out regions. Finally, I examine whether crowded-out patients are inequitably made up of

different demographic groups, including patient race, income, and ADI. I identify aggregate

differences across groups that result from both true and misperceived risk differences, with

a back-of-the-envelope calculation separating these effects.

In addition to implications for access to interventions within a single market, the above

model can easily be extended to consider multiple markets, as in previous work (Chandra and

Staiger, 2007). In particular, equilibrium allocations of patients across treatments (which

in turn determine productivity spillovers and, in part, equilibrium shifts in allocations post-

innovation) may differ across markets, leading to different estimated effects of an innovation’s

adoption in different regions. Similar logic as in Section 3.2 implies that these differential

effects may also generate inequitable loss in access to treatments across markets as well as

within them; this is particularly important given that racial and socioeconomic segregation

in the United States often imply that demographic differences across commuting zones are

likely larger than differences within them (Fu et al., 2023; Carpenter et al., 2022). I therefore

consider both differences within and across markets when estimating inequitable impacts of

technology adoption for valve interventions.

4 Methods

I assess the effects of TAVR’s adoption on access to valve replacements (SAVR/TAVR) and

valve supports (PCIs, including angioplasty and CABG) within a local market. Due to the

high comorbidity of aortic stenosis and coronary artery disease, PCIs are frequently per-

formed when a patient’s risk is too high for SAVR. Hence, as TAVR becomes available in

a local market, patients and physicians working together to evaluate risk and select treat-

ment options may be change their behavior in response to treatment availability and the

14



(potentially market-varying) estimated returns to each procedure. TAVR’s adoption may

therefore induce a flow of some patients from PCI to TAVR, especially when their risk pre-

viously made them poor candidates for SAVR; this, in turn, will alter the availability of and

expected returns to PCI procedures in that market.

4.1 Estimating Patient Risk

Cardiac surgery risk is typically estimated using models constructed by The Society of Tho-

racic Surgeons (STS), accounting for pre-operative factors that influence surgical outcomes

(O’Brien et al., 2009). I use the STS Predicted Risk of Mortality (STS-PROM) model, a

logistic regression of 60-day mortality on patient demographics and health conditions (Ap-

pendix Table A.3). This model classifies patients into low risk (score ≤ 3%), moderate risk

(score between 3% and 8%), and high risk (score ≥ 8%). Traditionally, SAVR is limited to

low-risk patients, while PCIs can be done on higher-risk patients.17

The empirical distribution of predicted risk in my sample closely matches population

STS-PROM predictions (Appendix Figure A.3). I estimate an average (median) risk of 3.6%

(4.8%), with 40% of patients identified as low-risk, 44% as intermediate-risk, and 15% as

high-risk.

4.2 Effect of Innovations

To estimate the causal impact of TAVR’s adoption on treatment decisions, I use a local

projections difference in differences (LP-DID) estimator (Dube et al., 2023), which uses a

“stacked” regression of treated units combined with their clean controls to estimate treatment

effects without bias from naive staggered adoption designs with heterogeneous treatment

effects (Roth et al., 2023). The regression uses local projections methods to restrict the

estimation sample so that previously-treated observations (which may be experiencing time-

varying or heterogeneous treatment effects post-adoption) are not included in the control

group, eliminating bias. The LP-DID regression performs similarly to other approaches in

this context, including weighted stacked DID regressions (Wing et al., 2024; Cengiz et al.,

2019) and imputation estimators (Sun and Abraham, 2020; Callaway and Sant’Anna, 2021).

Formally, for h periods pre- and post-treatment, I estimate the equation

ym,t+h − ym,t−1 = βLP-DID
h ∆Dmt + αm + τt + εhmt, (21)

17Some work questions the STS-PROM in physician decision-making (Catalano et al., 2020); however, as
it is still commonly used by practitioners to approximate θ, I incorporate it here.
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where the sample is restricted to newly treated (∆Dit = 1) or clean controls (∆Di,t+h = 0).18

Outcomes include intervention volumes at the market m level and treatment decisions for

patients i, with periods separated into quarters t. I cluster standard errors at the CZ level,

and report pooled estimates of the overall average post-treatment effect with each dynamic

regression. The LP-DID results I report are robust to including both comparisons between

early and late adopters of TAVR and comparisons to never-treated units, as well as only to

never-treated units.19

Throughout, the identifying assumption is that the timing of TAVR’s adoption is exoge-

nous at the local market level, in the sense that there are parallel trends and no anticipatory

changes in valve support procedures (not TAVR/SAVR volumes). That is, my approach

requires the assumption that interventional cardiologists did not adopt TAVR due to under-

lying changes in the expected volume of patients seeking PCI interventions; while hospitals

certainly made strategic decisions about when to adopt TAVR adoption based on antici-

pated valve replacement volume, my estimation is well-identified provided there were no

spillovers in these anticipated events. This can be examined directly by assessing differential

pre-trends between adopting and non-adopting markets for indications that volumes were

changing before adoption.

4.3 Heterogeneity & Inequities in Post-Innovation Access

I also examine heterogeneity across two key dimensions: patient risk and market indicators

for access to healthcare. I assess inequities across three dimensions: the racial makeup of a

market, a market’s Area Deprivation Index (ADI) score, and a region’s socioeconomic status

(proxied by the fraction of patients who are dually-eligible for Medicaid). For each, I assess

heterogeneous treatment effects by binning markets and estimating traditional difference-

in-differences regressions.20 Where applicable, I adjust these results for multiple inferences

using sharpened false discovery rate control methods (Anderson, 2008) and smooth using

weighted local nonlinear regressions, allowing for a direct comparison of adoption effects

across patients of differing surgical risk and markets of differing disadvantage.

5 Results

Figure 3 presents the dynamic effects of TAVR adoption on interventional cardiology proce-

dures at the commuting zone level, following Equation 21. Prior to adoption, I observe no

18Note that the regression equation for patient-level outcomes is similar to Equation 21.
19Effects were estimated using the LPDID package in Stata (Busch and Girardi, 2023).
20Results are robust to using average “pooled” LP-DID effects instead of DID coefficients.
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meaningful variation in procedure volumes.21 However, post-adoption I observe a marked

decline in total surgical volume, with average volume dropping by 3.7 interventions quarterly,

or 14.8 interventions annually. This is roughly 20% (7.8%) of the total volume of the median

(average) commuting zone, which performs 18 (47.3) procedures per quarter. These effects

are first observed one year after TAVR’s adoption, becoming more pronounced within the

first three years post-innovation.

Figure 3. Effect of TAVR Adoption on Total Surgical Volumes, Commuting Zone Level

Pre-treatment median:   18

Pooled Effect: -3.69
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Notes: Estimated impact of TAVR adoption on total volume of surgical interventions performed by
interventional cardiologists. Here, the outcome variable is the count of all valve interventions performed
at a CZ level, including valve replacements (SAVR/TAVR) and valve supports (PCIs). Markets per-
forming ≤ 5 inpatient procedures quarterly are dropped from estimation. Standard errors are clustered
by commuting zone.

These effects are dominated by reductions in overall availability of valve supports, swamp-

ing the expansion of valve replacement options. Given that supplying these interventions

involves different costs (Table 1), I disaggregate the overall adoption effects across specific

interventions in Appendix Figure A.4.22

In keeping with the model, the availability of valve replacements increased post-adoption

at an average rate of 1.48 valve replacements per quarter. In general, TAVR’s adoption

21The pre-treatment pooled LP-DID estimate is 0.558, with a 95% confidence interval of [−0.576, 1.692].
22The figure shows results for valve replacements (SAVR/TAVR), angioplasty (PTCA), cardiac catheter-

ization, and all other PCI interventions; each of these last three groups constitutes roughly one-third of all
valve supports in our sample. Note that only 213 patients in my sample (.02%) received more than one valve
replacement; hence, the observed results are unlikely driven by repeat patients. Importantly, only 5.6% of
SAVR patients in the sample required a follow-up PCI prior to TAVR’s adoption; this indicates that the
declines here are unlikely to be driven by TAVR’s adoption reducing the need for follow-up PCI interventions
following a valve replacement.
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expanded valve replacement procedures to patients that are on average 4.1 years older and

1.5 percentage points higher-risk. On the other hand, TAVR’s adoption led to overall de-

clines in other intervention volumes that outpaced their relative cost-savings, with average

reductions of 3.7 PTCAs and 2.6 other PCI interventions; I find no significant effects on

cardiac catherization.23 This implies that roughly 4 valve supports were eliminated for each

TAVR procedure adopted by the average CZ, roughly consistent with the cost differential

across PCIs and TAVR.

Analysis of the dynamic treatment effects—rather than simple DID estimation—provides

important insight into the changing landscape of TAVR utilization and substitution post-

adoption. The quality of TAVR my be improving over time for two reasons: first, providers

gaining experience in the procedure may induce improved outcomes (as suggested by the

model); second, subsequent clinical trials expanded TAVR utilization to lower-risk patients

(see Section 2). Hence, the results in Figures 3 and A.4—which show increasing adoption

and substitution over time—are likely influenced by this move down the “appropriateness

curve”. One important concern in interpreting these dynamic effects, then, is that they

may be endogenous to market characteristics, especially if hospitals or CZs that expected

increased dynamic returns (from specialization or expanded patient markets) were more

likely to adopt TAVR earlier than others. However, these strategic decisions would serve

only to reinforce inequitable access to surgeries, as these decisions impact overall volume of

valve interventions.

These results—tested at the market level—also hold for individual patients. In Appendix

Figure A.5, I use the 20% sample of all Medicare beneficiaries to estimate changes in the

likelihood that individual patients receive procedures (measured in rates per 1,000 patients).

As at the market level, reductions in the overall probability of receiving an intervention

are driven by large reductions in valve support utilization, swamping expansions in valve

replacements.

Importantly, this patient-level analysis allows for a more in-depth exploration of patient-

physician interactions and heterogeneity across patient severity. I highlight two facts in the

Appendix: First, Figure A.6 shows that following TAVR’s adoption, interventional cardiol-

ogists are roughly 35% more likely to screen patients for appropriateness for SAVR/TAVR.

This suggests that physicians may adapt their diagnostic screening strategies in response to

available technology (Mullainathan and Obermeyer, 2021) or learning about surgical out-

comes and availability (Hoagland et al., 2024). Second, I also show that while the overall

23Note that there are significant pre-trends for PTCA effects; this may be related to either investment
costs as TAVR is preparing to be deployed in a region, or strategic delays in valve replacements for some
patients until after TAVR becomes available. These differences, however, appear to be anticipation effects
that would serve only to understate true declines in overall surgical volume that are highlighted here.
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availability of valve supports declines post-adoption, urgent PCI procedures—including an-

giography for patients following a heart attack—are not delayed (Figure A.7).

Finally, I consider relationships in the average differences in quarterly TAVR utilization

and total intervention volume between 2010 and 2017, shown in Figure A.8. The figure shows

a strong overall negative relationship, indicating that local markets that invested more heav-

ily on TAVR experienced larger declines in total intervention volume by the end of the data

period. As expected, there are several local markets where TAVR’s uptake is particularly

concentrated, with roughly 15 commuting zones performing more than 100 TAVR’s quarterly

post-adoption. However, my results do not appear to be driven by these large markets; on

average, the observed declines in total intervention volume are on the order of ten interven-

tions per each individual TAVR adopted quarterly—greater than the one to four intervention

tradeoff estimated, on average, in Appendix Figure A.4. Additionally, effects are observed

even for markets that perform fewer overall interventions or specialize less in TAVR. Taken

together with Figure 3, this evidence suggests a strong relationship between adoption of a

novel technology and future restrictions in overall availability of medical interventions.

5.1 Which patients lose access to treatments?

These findings corroborate the model’s predictions that patients will be crowded out from

access to surgical care. Next, I isolate which patients are losing access to treatments based

on patient risk. Although TAVR expands access to valve replacements to riskier patients,

I do not observe a corresponding increase in the relative average risk of patients receiving

valve supports (Appendix Figure A.9). This suggests that the composition of valve support

patients changed along both margins, with a corresponding exit of higher-risk patients as

predicted by the model. I investigate this further, estimating treatment effects separately

across bins of patient risk to identify the crowd-out region.

Figure 4 shows the results across the distribution of 30-day risk. Each point in the figure

represents an estimated coefficient; these effects are then smoothed using a local linear

regression weighted by the number of patients in each bin, with standard errors corrected

for multiple hypothesis testing.24 The figure therefore identifies which patients experienced

the largest declines in access to cardiac interventions following TAVR’s adoption in their

market.

The results corroborate the model predictions that patients whose risk placed them on

the margin between low-intensity procedures (valve supports) and maintenance care were

24Results are similar across 60- and 90-day risk. Appendix Figure A.10 presents a version without smooth-
ing.
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Figure 4. Effects of TAVR Adoption on Total Intervention Volumes by Patient Risk
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Notes: Estimated heterogeneous treatment effects of adoption on total volume for valve replace-
ments and valve supports, stratifying patients by risk bin (width=0.2pp). Each point is a bin-specific
difference-in-differences coefficient, with effects smoothed nonparametrically using local linear regres-
sion weighted by patient volume. Standard errors are adjusted for multiple hypothesis testing (An-
derson, 2008; Benjamini et al., 2006). See Appendix Figure A.10 for non-smoothed version. Vertical
lines indicate STS-PROM delineation between low- and high-risk patients. Results are robust to using
“pooled” post-treatment LP-DID average effects.

more likely to forego care post-adoption. Figure 4 shows a clear region of patients crowded

out from treatment, specifically those whose risk is between 4.5% and 9%.

5.2 Inequities in Access to Surgical Care

The results suggest TAVR induced some relatively low-risk patients to switch into valve

replacements, but also drove higher-risk patients out of receiving valve support procedures.

As my model predicts, this lost access may differentially affect the most vulnerable popula-

tions, especially if groups have heterogeneous risk. I estimate how TAVR adoption affected

crowd-out across these groups, both across and within markets.

5.2.1 Market-Level Inequities

First, I consider how inequitable restrictions to access may propagate across markets, by

considering market-level differences in patient populations. This allows me to use the full

analytical sample, rather than the 20% carrier file available for patient-level analysis. I

sort commuting zones into ventiles based on the stratifications above, including the share
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of nonwhite patients, the share of dually-eligible patients, and the average ADI across zip

codes in a CZ. For each ventile, I follow the same procedure applied in Section 5.1, estimating

DID coefficients for total change in intervention volume and then smoothing using weighted

nonlinear regression.

Figure 5. Inequities in TAVR’s Effects on Local Access to Interventions: CZ Level

(a) % Non-white

-80

-60

-40

-20

0

0 5 10 15 20
CZ Ventile

(b) 9-digit zip code ADI

-100

-80

-60

-40

-20

0

0 5 10 15 20
CZ Ventile

Notes: Heterogeneous effects of TAVR adoption on surgical volume across binned (ventiles) of CZs
according to disadvantage, measured in (a) as the fraction of nonwhite patients, and in (b) as the average
ADI in the market. Each point represents a difference-in-differences coefficient, where the outcome is
total surgical volume at the market level as in Figure 3; effects are smoothed nonparametrically using
local linear regression weighted by patient volume. Standard errors are adjusted for multiple hypothesis
testing (Anderson, 2008; Benjamini et al., 2006). See Figure A.11 for results for dually-eligible patients.
Results are robust to using “pooled” post-treatment LP-DID average effects.

Figure 5 presents the results. In both panels, a clear gradient emerges; in panel (a), local

markets with the most racial diversity experience a decline in total surgical access twice

as large the least diverse areas. These differences are estimated to be even larger when

examining local markets with limited employment, education, and housing, as measured by

average ADI in panel (b).25 These results suggest the local adoption of some innovations

may generate distinct experiences across patient groups, with vulnerable groups foregoing

access more readily than others.

Such an analysis leverages the large variation across markets in patient demographics,

including racial makeup and local measures of disadvantage. However, given that the model

predictions imply potential inequities within markets, I next consider differences in TAVR’s

effects within a commuting zone by examining patient-level data.

25I also stratify markets by dual eligibility, finding little evidence of inequities along this dimension
(Appendix Figure A.11).
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5.2.2 Patient-Level Inequities

I consider how differences in patient characteristics may affect the dynamic treatment effects

presented in Figure 3. This limits my analysis to the 20% carrier file, where I observe patient

geography (zip-code level ADI), dual eligibility status, race/ethnicity, and sex (Section 2).

Within each stratification, I present subgroup analysis estimating Equation 21 separately for

each group; I report the pooled post-treatment indicators for each.

Group Estimate % Change 90% Confidence Interval p-value

Overall -3.65 -7.25 [-13.33, -1.17] 0.050

Panel A: Patient Geography
ADI: Lowest Quintile -0.46 -5.75 [-14.66, 3.16] 0.284
ADI: Highest Quintile -2.44 -15.20 [-28.65, -1.75] 0.064

Panel B: Patient Eligibility
Not Dual Eligible -2.51 -6.43 [-13.19, 0.33] 0.118
Dual Eligible -1.13 -10.08 [-17.72, -2.44] 0.030

Panel C: Patient Race
White -3.13 -7.10 [-13.59, -0.62] 0.072
Black -0.45 -10.51 [-21.29, 0.26] 0.106
Hispanic 0.02 3.64 [-14.01, 21.28] 0.673
Other Non-White -0.09 -6.57 [-17.57, 4.43] 0.314
Any Non-White -0.52 -8.40 [-16.52, -0.28] 0.088

Panel D: Patient Sex
Male -2.25 -7.83 [-15.17, -0.50] 0.080
Female -1.40 -6.51 [-11.50, -1.51] 0.033

Notes: Table presents pooled LP-DID regression coefficients estimating the effect of TAVR adoption
on total surgical interventions performed by interventional cardiologists (Equation 21), stratified
by patient groups. Patients and demographic information are identified based on the 20% Carrier
file. The outcome variable is the count of interventions performed within the patient group at the
CZ level; markets with ≤ 5 procedures quarterly are dropped. Regressions include CZ and quarter
fixed effects, with standard errors clustered at the CZ level. Percentage changes are relative to the
mean CZ-quarter intervention volume for the indicated group.

Table 2. Within-Market Inequities: Pooled LP-DID Estimates

Table 2 presents the results. Overall, the 20% Carrier file suggests a post-TAVR decline

in surgical volume of 7.25% on average (in line with Figure A.5). Across the four panels, I

observe that patients in at-risk populations experience larger declines, relative to majority

populations. In panel (a), patients living in areas of higher disadvantage (even within the

same CZ ) experience larger declines in intervention volume post-TAVR. When comparing

those in the highest quintile of ADI values (most disadvantaged) to those in the lowest
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(least disadvantaged), the differences in declines are roughly 2.6 times as large for the more

disadvantaged areas. Similarly, I observe a significant 10% reduction in volume for dual-

eligible patients, compared to an insignificant change in volume for non-dual eligible patients.

In panel C, I observe relatively large declines in intervention volume among White patients

(7.10%), but larger declines for all non-White patients (8.40%) and Black patients specifically

(10.51%). Finally, I observe few differences between male and female patients, perhaps as

expected given that there is little prior reason to suspect inequitable differences in access

to valve procedures based on patient sex, particularly when compared to more meaningful

indicators such as race, ethnicity, income, and geography.

An important note, however, when comparing these effects, is that the estimated differ-

ences in intervention volume are not statistically different across groups. That is, although

I observe significant declines for some sub-groups and not others (for example, for dual el-

igible patients but not for ineligible patients), the estimated coefficients for each group are

contained in the 90% confidence interval of the other.26 In part, this is likely driven by

limited sample size, given the rarity of observed valve procedures in the 20% Carrier file.

Additionally—and perhaps more importantly—this noise across groups is likely driven by

the fact that variation within commuting zones across patient race, income, and ADI, is

very small, particularly when compared to the differences that exist across commuting zones

(Fu et al., 2023; Carpenter et al., 2022). Despite this lack of variation, however, my results

provide consistent weak evidence that patients within a CZ may be differentially affected by

TAVR’s adoption, in keeping with the model.

Taken together, the estimated differences both within and across markets suggest that

patients from at-risk populations experience differential declines in access to valve proce-

dures. Although interpretation is limited by imprecise identification of within-market effects

across patient groups, the combined estimates suggest that the effects of an innovation’s

adoption on total intervention availability—including for adjacent procedures—may serve to

widen gaps in access to care for patients who already face barriers to accessing care.

5.3 Patient Outcomes & Potential Mechanisms

These differences in access may harm downstream patient outcomes. Although potentially

detrimental effects may lag adoption by several years, identifying them is important to quan-

tify the potential severity of foregone care. For example, if valve supports such as PCIs were

over-used in some markets, the results in Figure 5 may not be welfare-decreasing (Chandra

26Note that here, I use 90% confidence intervals to account for the fact that patient-level analysis is only
performed on those included in the 20% carrier file, which significantly reduces the count of already relatively
rare valve procedures.
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and Staiger, 2020). I therefore explore two additional patient outcomes in Appendix Fig-

ure A.12: the rate at which PCIs were accessed only following acute cardiac events, and

post-operative outcomes. In the short run, TAVR-adopting markets experience an increase

in the fraction of PCIs precipitated by a cardiac event, estimated at 0.86 percentage points

(a 1.5% increase). This suggests that post-adoption, the health threshold for surgical inter-

vention was higher ; importantly, these effects are driven by both diverse and disadvantaged

markets.27

I also investigate post-operative outcomes, measured as the rate at which PCI recipients

experience cardiac events within a year post-procedure. Appendix Figure A.12 suggests mar-

kets with more nonwhite individuals experienced increases in these events of 1.97 percentage

points (9.1%) post-adoption. Although suggestive, results indicate potential differences in

health outcomes that may persist and even worsen with time. Finally, I examined the effect

of TAVR’s adoption on risk-adjusted outcomes for valve support interventions, including

readmission and mortality (Appendix Figure A.13). I find statistically insignificant effects,

precisely estimated enough to rule out increases of 17 percentage points in the likelihood of

readmission and 1 percentage point in the likelihood of post-operative mortality.

6 Conclusion

Inequities in access to high-return health services have persisted for decades, leaving patients

of lower incomes or marginalized groups with inferior treatments and, subsequently, health

outcomes. Innovations in health treatments—despite their significant health benefits—may

further entrench these differences if they inhibit access to older technologies.

I present a theoretical framework considering these implications. The model highlights a

tension between innovation takeup and overall service availability, stemming from physician

specialization, limited availability, and productivity spillovers. This tension implies that

post-innovation, overall availability to interventions may be reduced, leaving some patients

crowded-out of access to care. Importantly, crowd-out may differ systematically across a

population, differentially affecting vulnerable groups. I test these predictions empirically

using aortic valve replacement surgeries as a case study.

Studying TAVR’s adoption provides important insights for policymakers seeking to pro-

mote equitable access to healthcare. My results suggest that a policy focus on infras-

tructure to scale up innovative treatments—without compromising availability of adjacent

27I observe markets with more dual-eligible patients fare better than others. This is potentially at-
tributable to expanded coverage and reduced cost-sharing among this population (Ryan & Super, 2003), but
warrants future research.
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procedures—can limit inequitable spillover effects (Hoagland and Kipping, 2024). Identify-

ing these adjacent treatments and incentivizing their continued provision—for example, by

adjusting physician reimbursement rates or centralizing access to innovations (Yang, 2023)—

could maximize the social impact of technological change. Additionally, my results suggest

that policies aiming to reduce inequities in risk assignment may have spillover benefits : im-

provements in risk estimation which rely less on demographic information or provider bias—

such as improvements in precision medicine (Matthew, 2019; Hoagland, 2024)—may generate

large reductions in population-level differences in access. These potentially snowballing ef-

fects may make policies targeting equality across patient groups particularly appealing. For

example, while recent concerns have highlighted how naive artificial intelligence (AI) mod-

els assisting clinical decision-making may inadvertently exacerbate health inequities even in

cardiology care (Gichoya et al., 2022), adjusting these models to include a specific equity

focus may both reduce disparities in access to key services such as cardiovascular imaging

and, ultimately, reduce downstream healthcare costs (Dankwa-Mullan et al., 2021). Finally,

investments in primary care screenings and diagnoses may have large dividends, given that

these diagnostic inequities typically persist and widen as patients move “upstream” in the

treatment cycle (Marcus et al., 2023; Hoagland et al., 2024).

Future work examining the potentially unequal impact of technological change can build

on this paper in several ways. As innovations like TAVR mature, future work can consider

the long-run impacts of innovation on equity, including for outcomes not directly observable

in my data such as wait times, complications, and endogenous patient risk.28 New research

may also incorporate long-run physician entry, exit, and specialization decisions. Addition-

ally, future work may consider how selection affects market outcomes, whether selective

innovation takeup by providers (Huckman and Stern, 2022) or “cherry-picking” patients

post-innovations (Cram et al., 2008; Desai et al., 2009). Finally, this framework can be

extended to many other inequities and structural forces that worsen health outcomes for

marginalized groups, including discrimination at the point of care and systematic gaps in

seeking out healthcare due to eroded trust in the healthcare system (Webb Hooper et al.,

2019).

28Wait times for SAVR/TAVR have increased in other countries, leading to higher rates of heart failure
for those with severe aortic stenosis (Albassam et al., 2020). This might be due to high centralization of
access. Additionally, this paper only examined years that TAVR was available for high-risk patients; as
TAVR became more widely available, structural changes in the market for aortic stenosis treatments may
have occurred.
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A Appendix

A.1 Tables

All Procedures (N) Cardiothoracic Surgeons Interventional Cardiologists

All SAVR TAVR All SAVR TAVR All SAVR TAVR

2010 36,458 36,453 0 95.97% 95.97% 0.00% 2.62% 2.62% 0.00%
2011 38,084 37,376 705 94.37% 93.29% 1.08% 4.034% 3.32% 0.72%
2012 40,564 35,124 5,463 92.02% 83.52% 8.54% 6.69% 1.81% 4.90%
2013 44,736 35,369 9,409 91.10% 75.99% 15.21% 8.34% 1.76% 6.59%
2014 47,530 33,638 13,944 88.54% 68.02% 20.62% 10.67% 1.46% 9.23%
2015 53,301 33,225 20,134 85.55% 59.88% 25.77% 13.23% 1.13% 12.12%
2016 58,539 30,104 28,469 80.91% 49.37% 31.60% 17.88% 0.99% 16.90%
2017 60,896 25,933 35,010 77.15% 40.92% 36.31% 20.57% 0.76% 19.83%

Table A.1. Role of Cardiologists in Aortic Stenosis Procedures, 2010–2017

Table Notes: Each cell represents the fraction of the intervention type performed by the type
of medical professional in a given year. Sample is limited to all aortic valve replacements
(TAVR/SAVR) procedures. Totals do not add up to 100% because some procedures are performed
by a team comprised of both cardiothoracic surgeons and interventional cardiologists, and others
are performed by physicians with other listed specialties (e.g., internal medicine). Cardiothoracic
surgeons are those whose primary specialty is listed as “cardiac surgery”, “thoracic surgery”, or
“general surgery”; interventional cardiologists are those whose primary specialty is listed as “inter-
ventional cardiology”, “cardiology”, or “cardiovascular disease.”
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Version Codes General Description

Panel A: SAVR
ICD-9-PCS 3521, 3522 Open and other replacement of aortic valve
ICD-10-PCS 02RF0∗ Open replacement of aortic valves

Panel B: TAVR
ICD-9-PCS 3505, 3506 Endovascular replacement of aortic valve
ICD-10-PCS 02RF3∗, 02RF4∗ Percutanenous and/or endoscopic replacement of aortic valves

Panel C: PCIs
ICD-9-PCS 0061–0066 Percutaneous transluminal coronary angioplasty (PTCA)

3510–3514 Open heart valvuloplasty without replacement
3721–3723 Cardiac catheterization

ICD-10-PCS 0270∗—0273∗ Dilation of coronary arteries, percutaneous approach
027F∗—027J∗ Dilation of heart valves, percutaneous approach
02NF0ZZ, 02NG0ZZ, Release heart valves, open approach
02NH0ZZ, 02NJ0ZZ Release heart valves, open approach
02QF0ZZ, 02QG0ZZ, Repair heart valves, open approach
02QH0ZZ, 02QJ0ZZ Repair heart valves, open approach
037G∗–037Q∗ Dilation of arteries with intraluminal device, percutaneous
057L∗–057S∗ Dilation of veins with intraluminal device, percutaneous

Table A.2. Definitions of Interventional Cardiology Procedures

Notes: Table shows inpatient hospital procedure codes (ICD-9-PCS and ICD-10-PCS) used to identify valve
replacements (TAVR and SAVR) and valve supports (PCIs). Interventional cardiologists are identified using
the Medicare Data on Provider Practice and Specialty (MD-PPAS) files, 2010–2017. ∗ indicates all relevant
ICD codes with the listed prefix.
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30-Day Mortality 60-Day Mortality 90-Day Mortality

ME 95% CI ME 95% CI ME 95% CI

Panel A: Patient Demographics
Patient age -0.000 [-0.001,-0.000] -0.000 [-0.000,-0.000] 0.000 [-0.000,0.000]
Female 0.007 [0.006,0.008] 0.006 [0.004,0.007] 0.004 [0.002,0.006]
Black 0.011 [0.008,0.014] 0.009 [0.006,0.013] 0.009 [0.005,0.012]
Hispanic 0.006 [-0.000,0.013] 0.010 [0.002,0.017] 0.010 [0.002,0.018]
Other Minority Race 0.011 [0.007,0.015] 0.015 [0.010,0.019] 0.014 [0.009,0.019]
ADI (5-digit ZIP) 0.000 [-0.000,0.000] 0.000 [-0.000,0.000] 0.000 [-0.000,0.000]
ADI (9-digit ZIP) 0.000 [0.000,0.000] 0.000 [0.000,0.000] 0.000 [0.000,0.000]
Log(Median Zip Income) -0.006 [-0.010,-0.003] -0.010 [-0.014,-0.006] -0.013 [-0.017,-0.009]
Dual Eligible 0.049 [0.047,0.051] 0.061 [0.059,0.064] 0.069 [0.066,0.072]

Panel B: Chronic Conditions
# of Chronic Conditions 0.004 [0.004,0.004] 0.006 [0.005,0.006] 0.007 [0.007,0.008]

CC: AMI 0.005 [0.003,0.007] 0.006 [0.003,0.008] 0.005 [0.002,0.007]
CC: COPD 0.008 [0.006,0.009] 0.011 [0.009,0.012] 0.011 [0.009,0.013]
CC: CHF 0.018 [0.016,0.019] 0.024 [0.022,0.025] 0.026 [0.024,0.028]
CC: Diabetes -0.003 [-0.005,-0.002] -0.004 [-0.005,-0.002] -0.004 [-0.005,-0.002]
CC: Hypertension 0.006 [0.004,0.009] 0.006 [0.003,0.009] 0.006 [0.002,0.009]
CC: Stroke -0.000 [-0.002,0.001] -0.001 [-0.003,0.001] -0.002 [-0.004,0.000]

Panel C: Previous Healthcare Utilization
Any Previous Surgery 0.011 [0.002,0.021] 0.007 [-0.005,0.018] 0.001 [-0.013,0.014]
# of Previous Surgeries 0.006 [0.004,0.008] 0.006 [0.003,0.009] 0.005 [0.002,0.008]

Previous PCI -0.009 [-0.018,0.001] -0.004 [-0.016,0.009] 0.003 [-0.011,0.017]
Previous SAVR 0.021 [0.014,0.028] 0.023 [0.014,0.031] 0.022 [0.013,0.031]
Previous TAVR 0.006 [-0.008,0.020] 0.012 [-0.004,0.028] 0.013 [-0.004,0.030]

Any ED Visit 0.016 [0.014,0.018] 0.025 [0.023,0.027] 0.030 [0.028,0.032]
# of ED Visits -0.001 [-0.002,0.000] -0.005 [-0.005,-0.004] -0.006 [-0.007,-0.005]
Any Hospital Stay 0.032 [0.023,0.041] 0.017 [0.008,0.026] 0.004 [-0.006,0.013]
# Hospital Stays -0.023 [-0.024,-0.022] -0.034 [-0.035,-0.033] -0.037 [-0.038,-0.035]
# of Readmissions 0.016 [0.015,0.018] 0.029 [0.028,0.031] 0.034 [0.032,0.035]
# of Days Admitted -0.000 [-0.000,-0.000] 0.001 [0.001,0.001] 0.002 [0.002,0.002]

Observations 377,532 377,532 377,532

Table A.3. STS-PROM Logistic Regression Coefficients

Notes: Table shows estimated marginal effects (ME) and 95% confidence intervals (CI) according to the
STS-PROM model. Regressions include year-quarter fixed effects, and are estimated for the N = 377, 532
patients who received TAVR or SAVR procedures during the analytic period.
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A.2 Figures

Figure A.1. Timeline of TAVR Adoption
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Notes: Figure shows diffusion of TAVR procedures among different cardiac surgeon specialties over time.
Total volume of surgical valve replacements (SAVR and TAVR, labelled as “S” and “T” on the x-axis)
for the full U.S. Medicare population are shown, with a breakdown of surgeon specialty. Cardiothoracic
surgeons (“CT”) are those whose primary specialty is listed as “cardiac surgery”, “thoracic surgery”,
or “general surgery”; interventional cardiologists (“IVC”) are those whose primary specialty is listed
as “interventional cardiology”, “cardiology”, or “cardiovascular disease”. Other surgeons include those
with specialties outside of these fields (e.g., internal medicine) who also performed the procedures over
time.
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Figure A.2. Inequities in Crowdout Associated with Imperfect Risk Assessment
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Notes: Figure illustrates the relative “crowd-out regions” for members and nonmembers of a group g
when used in a proxy for patient risk, as well as the effect of measurement error in βd on the relative
crowd-out rates of members and nonmembers. The figure plots an inverse gamma distribution with
parameters (3, 1) for observable non-group covariates used in predicting patient risk, f(X−gβ−g). The
figure assumes that the membership variable dig is independent of all other covariates X−g. The region
A (in red) represents the crowd-out region for members of a group g given βd, and region B (in blue)
the corresponding region for nonmembers. Hence, the relative sizes of A and B (weighted by the overall
size of the group g in the population) indicate the representation of members of g in the crowd-out

region. Changes in ν affecting β̂d shift the region A′, ultimately affecting the relative representation of
members of group g in the crowd-out region.
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Figure A.3. Predicted Patient Risk of Surgical Mortality (STS-PROM)

(a) Pr(30-Day Mortality)
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Notes: Figure shows predicted surgical risk from TAVR and SAVR, estimated using the STS-PROM
model presented in Table A.3. The current STS-PROM model classifies a similar population as 33%
low-risk, 42% intermediate-risk, and 25% high-risk (Kumar et al., 2018).
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Figure A.4. Procedural Volume Responses to TAVR Adoption, by Intervention Type

(a) SAVR/TAVR Surgeries
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(b) PTCA

Pre-treatment median:    5

Pooled Effect: -3.70
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(c) Catheterization

Pre-treatment median:    3

Pooled Effect: -0.46
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(d) All Other PCIs

Pre-treatment median:    6

Pooled Effect: -2.60
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Notes: Figure shows estimated impact of TAVR adoption on the total volume of valve interventions
performed in a local market, divided into major service types. In each panel, the outcome variable
is the total market volume of a given intervention at a CZ level. Panel (a) shows the effect on all
SAVR/TAVR surgeries; panels (b) and (c) show the effects on PTCA and cardiac catheterization, the
two major PCI procedures; panel (d) shows effects for all other PCI interventions. Markets with fewer
than 5 inpatient procedures quarterly are dropped from estimation, and standard errors are clustered
at the CZ level.
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Figure A.5. Individual-Level Responses to TAVR Adoption

(a) All Interventions (Rate/1,000 patients)

Pre-treatment mean: 66.50

Pooled Effect: -5.32
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(b) Valve Replacement (Rate/1,000 patients)

Pre-treatment mean: 0.01

Pooled Effect: 0.03
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Notes: Figure shows estimated likelihood of an individual patient receiving (panel A) any valve in-
tervention or (panel B) valve replacement following TAVR’s adoption in their commuting zone. Here,
the denominator is the full CZ population from the 20% carrier file; results are robust to limiting the
denominator to only patients with an aortic stenosis diagnosis prior to the intervention, as discussed
in Section 2. Markets with fewer than 5 inpatient procedures quarterly are dropped from estimation,
and standard errors are clustered at the CZ level.
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Figure A.6. Effect of TAVR Adoption on Screening for Surgical Viability

Pre-treatment mean: 3.99

Pooled Effect: 1.41 (p = 0.0785)
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Note: Figure shows effect of TAVR adoption at the CZ level on the fraction of interventional cardi-
ologists performing Computed Tomography Angiography (CTA) screening to diagnose aortic stenosis
and discuss valve replacement or support options (CPT code 71275). Regressions are estimated as in
Equation 21. Markets with fewer than 5 inpatient procedures quarterly are dropped from estimation,
and standard errors are clustered at the CZ level.
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Figure A.7. TAVR Adoption Effects on Acute Angiography for NSTEMI PatientsPre-treatment mean: 39.63

Pooled Effect: -0.15
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Note: Figure shows estimated treatment effects of TAVR’s adoption on the percentage of Non-ST-
Elevation Myocardial Infarction (NSTEMI) patients receiving an angiogram within 72 hours (the max-
imum acceptable wait time recommended by the European Society of Cardiology guidelines) (Hansen
et al., 2018). Markets experiencing fewer than 5 NSTEMI patients quarterly are dropped from estima-
tion.

Figure A.7 considers the case of urgently required PCIs, using the case of Non-ST-

Elevation Myocardial Infarctions (NSTEMIs). These are less severe heart attacks that

typically require angioplasty to reduce patient risk of future, more serious, heart attacks

or strokes. The American and European Society of Cardiology guidelines both state that

angiography should be performed on NSTEMI patients within 72 hours, in preparation

for subsequent angioplasty (Hansen et al., 2018). The figure shows that the percentage of

NSTEMI patients meeting this target is not affected by TAVR’s adoption, suggesting that

the reductions in PCI availability may be for less severe patients.
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Figure A.8. Market Relationships Between TAVR Takeup and Overall Intervention Volume
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Notes: Figure shows a binscatter plotting the relationship between TAVR takeup in a local market
(commuting zone) and changes in total interventional cardiology procedures performed. Each point is
a CZ included in the analytical sample; the x-axis shows average quarterly TAVR volume in 2017, and
the y-axis shows average differences in total IVC surgical volume (quarterly) between 2010 and 2017. 2
CZs with total 2017 TAVR volume exceeding 200 patients/quarter are dropped from view for visibility;
binned regression results are robust to their inclusion/exclusion.
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Figure A.9. Effect of TAVR Adoption on Average Risk of Valve Support Patients

(a) Log(90-day STS-PROM Risk)

Pre-treatment median: -2.690

Pooled Effect: 0.015 (p-value: 0.5225)
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Note: Figure shows effect of TAVR adoption at the CZ level on estimated mortality risk (STS-PROM)
for patients receiving low-intensity treatments (valve supports). Figure shows results for 90-day pre-
dicted risk, with a log-transformed outcome variable. Results are similar for 30- and 60-day risk.
Regressions are estimated as in Equation 21, with standard errors clustered at the CZ level.
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Figure A.10. Heterogeneous Effects of TAVR Adoption on Procedural Volumes by Patient
Risk
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Note: Figure shows estimated heterogeneous treatment effects of TAVR’s adoption on total surgical
volume for patients in different risk bins. STS-PROM risk is binned (width=0.2 percentage points); each
point represents a difference-in-differences coefficient of TAVR’s adoption on surgical volume within the
bin. Standard errors are adjusted for multiple hypothesis testing according to Anderson (2008) and
Benjamini et al. (2006). Markets performing fewer than 10 surgeries per quarter are dropped. Vertical
lines indicate STS-PROM delineation between low-risk patients (3%) and high-risk patients (8%).
Compare with Figure 4.
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Figure A.11. Effects of TAVR Adoption on Procedural Volumes by Dual-Medicaid Eligibility
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Note: Figure show heterogeneous effects of TAVR adoption on total volumes of valve replacements in
a commuting zone. CZs are binned by ventiles according to the fraction of patients in a market who
are dually-eligible for Medicaid. Each point represents a difference-in-differences coefficient; effects
are smoothed nonparametrically using local linear regression weighted by patient volume. Results
are robust to using “pooled” post-treatment LP-DID average effects. Standard errors are adjusted
for multiple hypothesis testing according to Anderson (2008) and Benjamini et al. (2006). Markets
performing fewer than 5 interventions annually are dropped. Compare with Figure 5.
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Figure A.12. Incidence of Cardiac Events Prior to or Following PCI

(a) Hospitalization Preceding PCI
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(b) Hospitalization Following PCI
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Notes: Figure shows difference-in-differences coefficients estimating the effect of local TAVR adoption
on the percentage of PCI patients who either (a) had their procedure precipitated by a hospitalization
(less than a year prior to PCI) or (b) experienced a cardiac event within a year following PCI. Cardiac
events are limited to inpatient stays for heart attacks or heart failure. Across each group, markets in
the top and bottom quintile are compared. Regressions adjust for CZ and quarter-of-year fixed-effects,
and 95% confidence intervals are shown. Results are robust to using pooled LP-DID coefficients.
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Figure A.13. Effect of TAVR Adoption on Valve Support Intervention Outcomes

(a) Readmission
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(b) Mortality
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Note: Figures show effect of TAVR adoption at the CZ level on readmissions (panel A) and mortality
(panel B) within 60 days following valve support (PCI) procedures. Regressions are estimated as in
Equation 21, with standard errors clustered at the CZ level. Results are robust to limiting to 30- or
90-day windows for health events.
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